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A B S T R A C T

Objectives: Bone metastases are of high clinical relevance because they are a frequent complication of most
types of common cancers, such as breast and prostate. The metastatic process is complex, requiring the com-
pletion of several different steps to allow successful dissemination and homing. In addition, preparation of
the metastatic niche changes the constant cycle of bone matrix formation and degradation, leading to the
clinical phenotypes of lytic and sclerotic lesions. We review our current knowledge on this topic and briefly
explain the current treatment landscape of bone metastasis.
Data Sources: These include PubMed, international guidelines, and clinician experience.
Conclusion: Bone metastases remain a clinical challenge that negatively impacts patients prognosis and qual-
ity of life. A comprehensive understanding of the complex molecular mechanisms that results in bone metas-
tasis is the basis for successful treatment of affected patients. The disruption of bone matrix metabolism is
already recognized as the prerequisite for metastasis formation, but many open questions remain that need
to be addressed in future research to establish individually tailored treatment approaches.
Implications for Nursing Practice: Patient-centered therapy of bone metastases requires suitable pharmacolog-
ical options, and importantly a holistic approach in care delivery across the multidisciplinary team. Nurses
provide the cornerstone of the multidisciplinary team and provide the closest and the most frequent contact
to the patient and their families to provide timely intervention. Nurses require a basic understanding of the
complex physiology of metastasis to inform practice.

© 2022 Elsevier Inc. All rights reserved.
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Introduction

Over the last few decades, the treatment options for many tumors
have considerably improved, and in most cases, early-stage cancer
can now be well controlled. However, the occurrence of metastasis
remains associated with a high burden of morbidity and mortality.1,2

Different cancer entities display typical patterns of metastasis, with
malignancies originating from the breast, the prostate, or lung being
especially prone for colonization in the bone.3 Although bone metas-
tases are usually not a direct cause of death, they often lead to pro-
found decrements in quality of life.4 Complications arising from bone
metastases are classified as skeletal-related events (SREs), which
include pathological fractures, dependence on radiation or surgery
due to pain or local instability, spinal cord compression, or hypercal-
cemia. SREs are commonly associated with severe cancer-induced
bone pain and restrictions in mobility, which result in a compromised
social life and risk of social isolation.5,6
The pathophysiology of bone metastases remains incompletely
understood. Although the direct interactions of cancer cells with
bone cells have been deciphered in some detail, it is now accepted
that this is an oversimplification of a highly complex process that
includes a multitude of different cell types, including immune cells
and cells of the vasculature. To improve treatment options, it is there-
fore critical to further elucidate the underlying pathophysiological
mechanisms. Therefore, this article aims to provide a comprehensive
overview of the pathophysiological mechanisms of bone metastasis
and the current treatment landscape in the context of cancer care.

Molecular Mechanisms of Bone Metastases

The initial “seed and soil theory” postulated that bone is a highly
“fertile soil” that attracts cancer cells (the “seed”) as it provides an
abundance of “nutrients.”7,8 As existing knowledge on metastases
has expanded, so has the complexity of this simple theory, which
was first published in 1889.8 The basic idea that cancer cells are
attracted to the bone environment has been deciphered as a complex
process that is dependent on numerous cellular and soluble factors
and conditions. The metastatic process (Fig. 1) to bone is initiated
when cancer cells evade the primary tumor and transit into the vas-
culature followed by extravasation of the circulating tumor cells
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Figure 1. Bone metastasis. Hematogenous metastasis to the bone. Development from invasion, intravasation, circulation, and extravasation via adhesion to colonization of tumor
cells. Even years later, dormant tumor cells can proliferate again and become detectable metastases. CTC, circulating tumor cell; C-X-C motif chemokine ligand 12; CXCR4, C-X-C
motif chemokine receptor 4. Adapted from Coleman, Croucher, Padhani, et al.39 Figure created using Biorender.com
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(CTCs) into a metastatic niche at the site of future metastases. In the
next step, CTCs colonize as disseminated tumor cells (DTCs) where
they interact with cells from the bone, stroma, and immune system.
Within the bone, cancer cells can either colonize and expand imme-
diately or evolve to manifest metastases after a period of dormancy.9

Migration to Bone

In most cases, cells with accumulated mutations conferring onco-
genic potential are rapidly eliminated by apoptosis in an autoprotec-
tive mechanism. Rendering resistance to this form of regulated cell
death is a hallmark of cancer.10 Having established a proliferative
advantage, these cells are set to form a primary tumor.11 Although
already invasive and, thus malignant in nature, this process is still
restricted to the original site. The progression into a metastatic state
requires an additional set of mutations, which offer additional traits.
Nonmalignant cells are bound to an environment of cell-cell and cell-
matrix interaction; the loss of those causing apoptosis.12 To enter
into the circulation, malignant cells must shed these restrains and
become “self-sufficient.” Blood is a toxic environment for cells with
high levels of redox stress and sheer forces of the fluid milieu. To
overcome this step a rewiring of cellular metabolic processes is
needed.13 Finally, conquering of novel tissues to seed into a new
organ requires readaption to a microenvironment with a specific
extracellular context. Overall, the process of detachment and reloca-
tion known as anoikis constitutes the base for circulating and dissem-
inating tumor cells.14 The requisite of these processes largely explains
why metastasis appears relatively late in most malignancies,
although vascular invasion might be present earlier.

Metastasis into bone does not only depend on the successful colo-
nization by circulating tumor cells but also on a plethora of additional
tumor-derived factors, chemoattractants and the immune system to
prime the bone for cellular attachment and to orchestrate the
complex interplay between tumor cells and target tissue.9,15 Such
changes in the receiving tissue constitute the basis for an environ-
ment that has been termed “premetastatic niche.”16 Such an example
is the secretion of heparinase by breast cancer cells, which promotes
cell extravasation.17 Furthermore, factors like the chemokine-like
glycol-phosphoprotein osteopontin modulate the bone environment
by promoting osteoclast mobility and activation as well as binding to
avb3 integrin, which helps to anchor circulating cells to their target
tissue.18,19 Matrix metalloproteinases also support the preparation of
the extracellular matrix for integration of the circulating tumor
cells.17,18,20 Furthermore, bone homing factors such as extracellular
matrix proteins and chemokines contribute to establish a metastatic
niche.15,16,21 In line with this, hematopoietic stem cells are known to
migrate to established sites of metastasis and promote adhesion of
additional circulating tumor cells.22 The slow blood flow in the bone
marrow might augment tumor cell adhesion to endothelia at these
sites.23

Physiologically, the processes of bone remodeling are closely reg-
ulated by specialized bone cells like osteoblasts, osteocytes, and
osteoclasts. All of them are controlled and balanced by a complex sys-
tem of hormones, growth factors, cytokines, and immune cells. Over-
all changes in this system provides the perfect soil for tumor
evolution.24,25

The importance of interleukin (IL)-1 signaling further underlines
the strategic importance of osteoclast activation. In a murine breast
cancer model, inhibiting both the IL-1 receptor or IL-1b, respectively,
blocked spontaneous formation of metastases.24,26 Interestingly, the
processing of pro-IL-1b requires the activation of inflammatory cas-
pases and is dependent on pyroptosis, which thus link tumor-site
inflammation to systemic disease progression.27,28

In summary, the processes to establish a microenvironment as a
soil for disseminating tumor cells are complex and is therefore still
incompletely understood.
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Dormancy and Progression of DTCs

Only a small number of CTCs survive the transition to bone to
establish themselves as dormant DTCs.15,29 However, these tumor
cells are sufficient to cause relapse and expand to symptomatic bone
metastases years after initial diagnosis. Dormant tumor cells can sur-
vive in the hematopoietic stem cell niche as well in the perivascular
niche.30 DTCs are predictive to the development of bone metastases
and are associated with a poor prognosis.31

Dormant cancer cells first occupy and then interact with the niche
mediated by a cellular reprogramming resulting in niche adaption.
Afterward, a long-term dormancy sets in, which state might again shift
to tumor cell reactivation for incompletely understood reasons. One
theory is that the reactivation could be caused by an increase of
nutrients.32 Another theory proposes a critical role for changing cir-
cumstances of the immune system caused by reactive oxygen species,
ageing, chemotherapeutics, or other immunomodulating drugs.
Downregulation of innate and adaptive immune cells as well as bridg-
ing cytokines like IL-18 and transforming growth factor beta (TGFb)
promote an immune resistance by reduced antigen presentation and
increased expression of molecules like the ligand of Programmed cell
death protein 1.33,34 Niche remodeling seems to be involved as well as
bone remodeling osteoclasts have a monitoring function on dormant
tumor cells.35,36

The cell cycle arrest of dormancy gives tumor cells the ability to
survive up to decades, safely hidden away from the immune system,
evading apoptosis and with a marked resistance to chemotherapy.36,37

Bone Metastases Classification

Bone metastases can be radiographically classified as osteolytic or
osteoblastic (sclerotic) lesions. Although highly lytic lesions are more
prone to fractures, both forms are associated with a reduced bone
quality and strength.38 Whereas radiologic imaging typically suggests
a specific lesion type, a closer look reveals that in most cases both
lytic and sclerotic areas occur within the same lesion.39 Osteolytic
metastases are observable in breast, lung, and renal cancer as well as
in multiple myeloma, whereas prostate cancer is associated with
osteoblastic lesions.3

Osteolytic Lesions

Osteolytic bone metastases are characterized by an increased bone
resorption through over activation of osteoclasts.40 Cancer cells secrete
factors that induce bone resorption either directly or indirectly, pro-
moting the release of factors from bone which, in turn, result in tumor
proliferation and promote the vicious cycle associated with bone
metastases (Fig. 2).41 One of the best characterized factors is tumor-
derived parathormone-related peptide (PTHrP), but also certain cyto-
kines such as IL-6 and IL-8 represent important factors to promote
osteoclastogenesis.42,43 Osteoclast activity is regulated by receptor
activator of nuclear factor-kB ligand (RANKL). RANKL levels are
increased in the metastatic setting, and on binding to its cognate
receptor, receptor activator of nuclear factor-kB (RANK) signaling
results in differentiation and activation of osteoclasts.44,45 Additional
factors such as prostaglandin E2, tumor necrosis factor alpha, macro-
phage colony-stimulating factor, and IL-11 also contribute to osteoclast
formation.41 In many cases, these cytokines (PTHrP, interleukins, and
prostaglandin E2) also cause a decrease of osteoprotegerin (OPG). OPG
is a receptor that binds and blocks RANKL, preventing it from binding
to its receptor RANK, which is situated on osteoclasts. Thus, decreased
OPG levels lead to a higher bone resorption because more osteoclasts
are activated by RANKL.46 Furthermore, osteoclast activation and dif-
ferentiation is initiated and regulated by numerous additional cyto-
kines, matrix metalloproteinases, and other proteins such as TGFb,
insulin-like growth factor (IGF), bone morphogenetic protein, and
fibroblast growth factor (FGF).9,15,42,47,48 Subsequently, elevated cal-
cium levels are another factor promoting tumor proliferation by an
enhanced expression of calcium-sensitizing receptors.49,50 In addition,
inhibition of osteoblasts by Wnt-inhibitors such as dickkopf-1 (DKK-1)
or sclerostin also shifts the balance toward bone resorption and pro-
hibits physiological bone formation in the metastatic setting.24,51

Patients with advanced breast cancer mostly develop bone metastases
with an osteolytic appearance that are associated with a high occur-
rence of SREs.43 Advanced breast cancers with metastasis to the bone
show a median survival of about 2-3 years.52,53 The attraction of breast
cancer cells to this particular niche is subject of ongoing research.
Most of the mechanisms described have also been demonstrated to be
used by metastatic breast cancer.

Osteosclerotic Lesions

Sclerotic bone metastases seem to arise from an over activation of
osteoblasts caused by tumor-derived factors, although the patho-
physiology of sclerotic lesions remains less well understood than the
mechanisms of osteolytic bone disease. Factors that contribute to this
process include platelet-derived growth factor, IGF-1, FGF, and acti-
vated Wnt signaling.41,54,55 Furthermore, the mitogenic factor endo-
thelin-1 critically promotes osteoblast growth in addition to well-
known factors such as FGFs and bone morphogenic factors.56 Vice
versa, osteoblasts respond to this stimulation by secreting IGF, FGFs,
and TGFb, which all stimulate tumor growth.54 Especially in the case
of prostate cancer, additional factors shaping the microenvironment
such as chemokine (C-C motif) ligand 2, IL-6, and IL-8 are released.57

The interplay of tumor cells and osteoblasts creates a vicious cycle
promoting sclerotic lesions. It is this newly formed matrix, which is
the optimal environment for infiltration of additional tumor cells;
thus, finally leading to blooming of the metastases. To fuel this, both
tumor cells and osteoblasts secrete factors like vascular endothelial
growth factor to secure vascularization.58 Furthermore, tumor cells
are able to release extracellular vesicles such as tiny exosomes to
interact with the microenvironment.55

Taken together, the deranged balance of bone homeostasis in
favor of osteogenesis causes deformation of the usual bone structure,
resulting in sclerotic lesions with a disordered spongiosa. In addition
to osteoblast progenitors, osteomimicry seems to be a major contrib-
uting factor. This term denotes the ability of tumor cells to express
bone specific proteins like osteopontin, osteocalcin, and RANKL,
which promote formation of bone matrix assuming that cancer cells
imitate bone cells.59,60 Prostate cancer cells secrete a bouquet of fac-
tors, which promote bone metastasis either directly by activating
osteoblasts or indirectly by modulating the bone microenvironment.
On one hand, prostate cancer cells express physiological bone remod-
eling factors like BMPs and TGFb as well as growth factors.61 On the
other hand, prostate cancer cells secrete factors that derange the
bone microenvironment, including urokinase-type plasminogen acti-
vator, and prostate-specific antigen.54,61 Prostate-specific antigen
represents a serin protease, well known as prostate tumor marker,
which can cleave PTHrP, resulting in less bone resorption and a shift
toward osteoblastic activity.62

Therapy

As occurrence of bone metastases typically marks a transition
toward a palliative concept, an approach by a multidisciplinary team
should be emphasized to cover the range of different treatment
options adequately. Major goals include prevention of SREs as well as
broadly preserving quality of life, symptom management, and in par-
ticular, pain control. Treatment can consist of surgery, radio(-nuclide)
therapy, pain management, psychological support, systemic cancer
therapies as well as endocrine and bone-targeted therapies. Although
there are an increasing number of individuals affected by metastases



Figure 2. Vicious cycle of bone metastases. Tumor cells secrete factors that either directly or indirectly stimulate bone resorption that promote the release of factors from bone that
in turn lead to tumor proliferation and promote the vicious cycle associated with bone metastases. BMP, bone morphogenic protein; Ca2+, ionized calcium; CXCR4, C-X-C motif che-
mokine receptor 4; CXCR12, C-X-C motif chemokine receptor 12; FGF, fibroblast growth factor; GDF15, growth differentiation factor 15; HIF1a, hypoxia-inducible factor 1a; IGF1,
insulin-like growth factor 1; MMP, matrix metalloproteinase; OPG, osteoprotegerin; PDGF, platelet-derived growth factor; PGE2, prostaglandin E2; PTHrP, parathyroid hormone-
related protein; RANK, receptor activator of nuclear factor-kB; RANKL, receptor activator of nuclear factor-kB ligand; RUNX2, Runt-related transcription factor 2; M-CSF, macro-
phage colony-stimulating factor; TGFb, transforming growth factor b; TNFa, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor. Adapted from Coleman,
Croucher, Padhani, et al.39 Figure created using Biorender.com
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where systemic therapies can achieve long-term tumor control, the
majority of cases are not considered curative.6,24 In this clinical sce-
nario, bone-targeted agents have been a mainstay by lowering the
incidence of SREs and maintaining quality of life.63

Bisphosphonates

Bisphosphonates are the oldest group of clinically established
bone-targeted agents to reduce bone resorption through osteoclast
inhibition.64 First-generation bisphosphonates such as clodronate
serve as pyrophosphate analogues and bear the additional ability to
induce death of osteoclasts.65,66 Modern nitrogen-containing
bisphosphonates are termed “amino-bisphosphonates” and act as
mevalonate pathway inhibitors, which plays a critical role in osteo-
clastic function.67,68 While pamidronate and ibandronate have been
tested and are approved for some metastatic conditions, zoledronic
acid is considered the main agent with the best clinical data available
in this class of drugs. These antiresorptive agents represent the stan-
dard therapy for bone metastases and osteoporosis, thereby reducing
SREs including bone pain, fractures, and hypercalcemia.69�73

Denosumab

Denosumab is a monoclonal antibody against RANKL preventing
its binding to RANK and acting like its physiological inhibitor OPG.74

Three large randomized controlled trials compared denosumab to
zoledronic acid in different metastatic conditions.75-78 Superiority
regarding prevention of SREs in metastatic breast cancer and castra-
tion-resistant prostate cancer was demonstrated, whereas overall
survival and disease progression were equal.76,77 Denosumab was
noninferior in other advanced solid-tumor entities and in multiple
myeloma compared with zoledronate.78 Beside the approval for bone
metastases, denosumab is also used for osteoporosis treatment in
lower dosing and frequency.79�81

Side Effects of Antiresorptive Therapies

Compared to other cancer treatments, bisphosphonates and deno-
sumab show a relatively small number of adverse effects. Both agents
can induce hypocalcemia, osteonecrosis of the jaw, and atypical fem-
oral fractures as expected from antiresorptive effects.82 Bisphospho-
nates require dose adjustment for renal function, whereas
denosumab can be administered independently of the estimated glo-
merular filtration rate. The supplementation of vitamin D and cal-
cium remains important, especially in patients treated with
denosumab and chronic kidney disease.6,83 Osteonecrosis of the jaw
is a rare but serious complication that mainly occurs in association
with dental surgery, poor dental hygiene, smoking, diabetes mellitus,
or glucocorticoid use.39,84 In a few cases, antiresorptive long-term
treatment with a high cumulative dose can lead to atypical femoral
fractures.85 Noteworthy, the effect of denosumab is reversible after
termination and that it does not accumulate in bone.86

Implications for Practice and Conclusion

The prognosis of patients with cancer and their survival, even
after occurrence of metastasis, has dramatically improved over the
last 2 decades. However, SREs remain a clinical challenge in some of
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the most common types of cancer. Both lytic and sclerotic lesions
demonstrate typical features, but each tip the delicate balance of
bone formation and degradation to one site or the other. These pro-
cesses include the (inter)-action of different cell types such as osteo-
blasts and osteoclasts with the DTCs, as demonstrated in Fig. 1.
Importantly, all these populations communicate reciprocally by vari-
ous cytokines and direct interaction with the bone matrix (Fig. 2).

Of note, due to a lack of specific drugs for the treatment of scle-
rotic lesions, these are currently treated in a similar manner as pre-
dominantly osteolytic metastases with bisphosphonates or
denosumab. Further research to understand the pathology of scle-
rotic lesions is needed to develop individual approaches for patients
and to empower caregivers to provide support in a multidisciplinary
team. The latter is the basis to provide significant improvements in
quality of life.
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