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Abstract
Purpose of Review The present review addresses most recently identified mechanisms implicated in metastasis-induced bone
resorption and muscle-wasting syndrome, known as cachexia.
Recent Findings Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have
identified a number of secretedmolecules and extracellular vesicles that contribute to cancer cell growth andmetastasis leading to
bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and
mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review
novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia.
Summary Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better
understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights
and identify new strategies to improve current anticancer therapeutics.
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Introduction

Metastasis is a multi-step process, which includes dissemina-
tion of cancer cells from the primary tumor, survival in the
circulation and colonization at distant metastatic site. Bone
metastases are most common in patients with prostate and
breast cancer, and to a lesser extent in kidney, lung, and thy-
roid cancer patients [1,2]. Bone metastatic cascade is initiated
by cancer cell invasion through the basement membrane and
extracellular matrix and migration to the blood or lymphatic
system [3]. During cancer cell invasion, important roles are
attributed to matrix metalloproteinases (MMPs) due to their
ability to cleave and degrade extracellular matrix (ECM) [4].
In addition, cancer cells undergo epithelial-mesenchymal tran-
sition (EMT) which enhances their invasiveness, while

following homing at metastatic site they revert to epithelial
phenotype by mesenchymal-epithelial transition (MET) re-
quired for metastatic outgrowth [5]. Once in the bone, metas-
tatic cancer cells secrete cytokines including parathyroid
hormone-related peptide (PTHrP), which induce bone-
forming osteoblasts to produce excessive amount of receptor
activator of nuclear factor kappa-B ligand (RANKL) to acti-
vate the bone-resorbing osteoclasts. Upon bone resorption,
growth factors such as transforming growth factor β
(TGF-ß) that further stimulate tumor growth creating a so-
called “vicious cycle of bone metastasis.” In addition to
osteolytic lesions, certain cancers, such as prostate cancer,
result in osteoblastic metastases due to abnormal formation
of woven, poor-quality bone.

Although skeletal muscle is the most abundant tissue in
the vertebrate body, metastases are very rare with a preva-
lence range from 0.03 to 17.5% [6]. However, excessive
muscle wasting, or the loss of muscle tissue, is commonly
observed in metastatic cancer [7,8]. The release of soluble
proteins, exosomes, and metabolites from metastatic tissues
can systematically affect distant organs such as muscle and
lead to muscle wasting syndrome, also known as cachexia
[7,9]. Cachexia is a multi-organ wasting syndrome charac-
terized by ongoing loss of skeletal muscle mass, decreased
muscle strength, systemic inflammation, and increased basal
energy expenditure that cannot be fully reversed by
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conventional nutritional support [10,11]. Ultimately, cachex-
ia leads to progressive functional impairment, decreased
quality of life, and increased mortality of cancer patients
[12]. In general, skeletal muscle wasting has been highly
associated with pancreatic, stomach, colorectum, lung,
head-neck, and breast cancer patients [13]. Currently, there
is no standard treatment for cancer cachexia. Thus, there is
an urgent need for further investigation and better under-
standing of underlying mechanisms which could lead to po-
tentially new therapeutic targets.

Muscle Defects in Metastatic Disease

Molecular Mechanisms Underlying Cancer Cachexia

The mechanisms that drive metastasis-induced cachexia
are not fully understood. While muscle protein breakdown
in cancer is clearly induced, changes in muscle protein
synthesis are not consistent [14,15]. The main protein
degradation pathway is the ubiquitin-proteasome system,
which involves muscle specific E3 ligases atrogin-1/
MAFbx (muscle atrophy F-box protein) and MuRF-1
(muscle-specific RING-Finger-1) [14]. In advanced can-
cer, transcriptionally activated E3 ligases mediate ubiqui-
tination of muscle structural and contractile proteins, thus
contributing to muscle atrophy and decreased muscle
function [14]. Muscle degradation in cancer is also medi-
ated through the autophagic-lysosomal system, which in-
duces lysosomal-dependent degradation of cytoplasmic
proteins and organelles, and calcium-dependent proteoly-
sis composed of cysteine proteases, also known as
calpains [14–16]. In metastatic cancer, these pathways
are activated by pro-inflammatory cytokines such as in-
terleukin 6 (IL-6), interleukin 1 (IL-1), tumor necrosis
factor alpha (TNF-α), and interferon gamma (IFN-γ)
[17–20]. These cytokines, secreted by cancer cells, im-
mune cells, and other non-cancer cells within the tumor
microenvironment, contribute to systemic inflammation
and activate catabolic processes in muscle through tran-
scriptional regulators such as p38 MAPK, nuclear factor
kappa B (NF-κB), and STAT3 [11,17]. In addition to
cytokines, other tumor-derived factors are implicated in
cancer cachexia such as hormones, metal ions,
microRNAs, and members of the TGF-β superfamily in-
cluding TGF-ß, activin A, growth differentiation factor-11
(GDF-11), and myostatin [17,21,22]. Also, recent studies
suggest that alterations in the muscle microenvironment in
cancer cachexia can affect its regenerative ability [23,24].
Furthermore, mitochondrial dysfunction in skeletal mus-
cle has been implicated in muscle catabolism and cancer-
induced muscle wasting [25].

Mechanisms Underlying Muscle Defects in Bone
Metastases

Metastatic bone disease is often associated with skeletal
muscle weakness [22,26–28]. Osteolytic bone metastases
stimulate bone resorption, which leads to the release of
bone-derived factors, particularly TGF-β, from the bone ma-
trix [22,29]. The mechanism by which TGF-β contributes to
skeletal muscle weakness was shown to be through NADPH
oxidase 4 (NOX4)-mediated oxidation of skeletal muscle
proteins such as ryanodine receptor/calcium (Ca2+) release
channel (RyR1) [22]. As RyR1 channels are required for
muscle contraction by releasing calcium from sarcoplasmic
reticulum stores into cytoplasm, their oxidation results in
intracellular calcium leakage, which leads to muscle weak-
ness. A similar mechanism was observed in mouse models
of osteolytic bone metastases from breast, prostate, and lung
cancers; multiple myeloma; and a syngeneic mouse model
of osteolytic cancer in the bone [22,28]. Consistently, we
have demonstrated the effect of osteolytic breast cancer bone
metastases on muscle weakness and muscle fiber atrophy via
bone-matrix–derived TGF-ß and activated p38/NF-κB sig-
naling cascade [27••]. Pharmacological inhibition of
sclerostin an inhibitor of the WNT signaling and bone for-
mation reduced cancer progression and bone destruction and
importantly improved muscle microarchitecture and func-
tion. In addition, observed expansion of Pax7-positive satel-
lite cells in the muscle most likely contributes to declining
muscle strength, as NF-κB activation usually leads to quies-
cent state of satellite cells and dysregulation of the myogenic
program [30]. The regenerative capacity of muscle was par-
tially restored by anti-sclerostin antibody treatment, which
resulted in suppressed p38/NF-κB signaling and restored
number of Pax7-positive satellite cells [27••].

In accordance with our findings, a severe muscle regener-
ation defect was associated with an elevated number of Pax7-
positive satellite cells in a cancer cachexia model using colon-
26 (C26) cancer cells [23,24]. Mechanistically, the impaired
myogenesis resulted from a suppressed differentiation poten-
tial of satellite cells due to reduced neutrophil infiltration and
macrophage recruitment in cachectic muscle or dysregulated
IL-4-dependent signaling. Regarding the latter, IL-4 treatment
counteracted cachexia and restored muscle mass by increasing
muscle protein synthesis [24]. Furthermore, muscle regenera-
tion was partially restored by IL-4 as shown by a reduced
accumulation of satellite cells and fibro-adipogenic progeni-
tors, which are non-myogenic muscle stem cells that regulate
muscle homeostasis and can differentiate to adipocytes or fi-
broblasts in pathological and chronic conditions [31]. Finally,
IL-4 administration potentially increased the immune re-
sponse against the tumor as large areas of necrosis in tumors
were accompanied by an increased number of cytotoxic lym-
phocytes and type II macrophages.
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Mechanism of Muscle Defects in Soft Tissue
Metastases

Recent studies have identified the role of the metal-ion trans-
porter ZIP14 in both advanced cancer patients and metastatic
breast cancer and colon cancer mouse models [7]. ZIP14 was
upregulated in cachectic muscles by TGF-ß and TNF-α, lead-
ing to enhanced ZIP14-mediated zinc uptake by muscle, re-
duced expression of myogenic regulatory factors, and loss of
myosin heavy chain. Similar mechanism of ZIP14 upregula-
tion and increased zinc uptake in the muscle was associated
with the activation of TGF-ß/SMAD signaling and progres-
sion of cachexia in metastatic models of breast cancer and
pancreatic ductal adenocarcinoma [32,33]. Therefore, ZIP14
provides a potential link between zinc accumulation and
metastasis-induced cachexia and serves as a potential thera-
peutic target.

Cachectic phenotype was also observed in advanced colo-
rectal cancer models, including C26, MC38, and HCT116,
accompanied by development of liver metastases [34••, 35,
36]. Muscle atrophy was linked with aberrant activation of
STAT3, which contributed to proteolysis pathways through
activation of Atrogin-1 and MuRF1 [34••,35]. STAT3-
mediated muscle wasting was triggered by circulating IL-6,
whereas inhibition of IL-6/STAT3 signaling rescued muscle
atrophy [35]. Indeed, increased levels in total STAT3 have
been shown to correlate with poor prognosis of advanced
cancer patients [37]. Recently, HSP90-mediated activation
of STAT3 was shown to activate ubiquitin-proteasome path-
way in a FOXO1-dependent manner in cancer cachexia [38].
Furthermore, the release of HSP90 by cancer cells was respon-
sible for Toll-like receptor 4 (TLR4) activation and promotion
of muscle catabolism by activating p38/MAPK signaling cas-
cade [39], consistent with previous data in pancreatic cancer,
where ZIP4-mediated release of HSP70 and HSP90 promoted
muscle atrophy [40]. Colorectal cancer progression was ac-
companied with bone resorption and bone loss; however, the
presence of liver metastases exacerbated cachectic phenotype
[34••, 35, 36]. Hepatic alterations have been associated with
cancer-induced muscle wasting [41,42] and furthermore liver
fibrosis-induced muscle atrophy was promoted by elevated
levels of circulating IL-6, TNF-α and myostatin during pro-
gression of liver disease [43,44].

Recently, altered mitochondrial homeostasis has been im-
plicated in cancer-induced muscle wasting [25,34••,35,45],
contributing to a shift from oxidative to glycolytic metabo-
lism, which results in intramuscular lipid accumulation and
decreased muscle strength and function [34••]. Indeed, pa-
tients with metastatic melanoma demonstrated fatty infiltra-
tion in the muscle, leading to reduced skeletal muscle density
and poor survival [46]. Moreover, suppression of PGC1α, the
major regulator of mitochondrial biogenesis, has been linked
with high circulating IL-6 levels [47] and muscle atrophy

[34••,35,45]. In addition, mitochondrial dysfunction results
in release of myokine FGF21 [48], which contributes to mus-
cle loss [49]. Most recently, cachectic muscles have been
characterized by reduced mitochondrial iron content accom-
panied with increased catabolism, while iron supplementation
restored mitochondrial function, which resulted in improved
muscle mass, function and strength [50]. These results estab-
lish a critical role of iron in maintaining skeletal muscle ho-
meostasis, revealing ironmetabolism as a potential therapeutic
target in cancer-induced muscle atrophy.

Regarding other cytokines, IL-8 which is released from
pancreatic cancer cells at high levels correlated with muscle
atrophy, acting through CXCR2 receptor and activation of
ERK1/2 signaling [51]. More recently, high serum concentra-
tion of IL-35 in advanced non-small lung cancer and breast
cancer patients was linked with increased skeletal muscle at-
rophy and activation of MuRF1 and Atrogin-1 [52]. Stress-
responsive cytokine GDF15 and its receptor GDNF receptor
alpha like (GFRAL) have been implicated in cancer cachexia
[53]. Moreover, exosomes secreted by C26 colon cancer cells
were enriched with GDF-15 and found to contribute to the
development of cancer cachexia by inducing muscle atrophy
via regulating Bcl-2/caspase-3 pathways [54].

New cachectic and anti-cachectic factors have been identi-
fied in recent years. For instance, PAUF, which is secreted by
pancreas cancer cells, functions through Atrogin-1-dependent
catabolic pathways and has been associated with poor clinical
outcome in pancreatic cancer patients [55]. Furthermore,
IFIT2 depletion was shown to induce oral squamous cell car-
cinoma metastasis and skeletal muscle atrophy through IL-6
signaling [56], whereas deletion of stress-response protein
REDD1 prevented chemotherapy-induced muscle atrophy
via mTORC1-dependent signaling [57]. 3-MA was recently
identified as an anti-cachectic and anti-tumorigenic factor in
pancreatic cancer acting through inhibition of p53 apoptosis
effector related to PMP22 (PERP) and suppression of pancre-
atic cancer cell growth [58].

MicroRNAs in Metastasis-Induced Muscle Weakness

To date, several noncoding RNAs are known to be involved in
cancer-mediated muscle wasting [59]. Recently, Xie et al.
demonstrated that repression of miR-29c induced leukemia
inhibitory factor (LIF) in muscles that promoted muscle
wasting through the JAK/STAT and MAP kinase pathways
[60]. Muscle atrophy in colorectal cancer patients with metas-
tasis associated with increased circulating levels of miR-203
secreted by metastatic tissue [21]. Mechanistically, overex-
pression of miR-203 resulted in suppressed proliferation and
stimulated apoptosis of skeletal muscle cells via targeting
BIRC5 (survivin), a negative regulator of apoptosis. While
miR-181a-3p and both miR-195a-5p and miR-125b-1-3p in-
duced muscle atrophy by activating apoptotic signaling
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pathways [61,62], a decrease in miR-497-5p mediated by IL-
6, counteracted muscle atrophy by stimulating expression of
hypertrophy-related genes in cancer cachexia [63].
Furthermore, miR-450-5p and miR-451a were found differen-
tially expressed in skeletal muscle of cachectic lung cancer
patients; however, more research is needed to better under-
stand their regulation in muscle atrophy [64].

Models to Investigate Cancer-Induced Muscle Defects

Mechanistic studies of metastasis-induced cachexia have been
limited due to the lack of animal models that recapitulate clin-
ical features seen in humans. Therefore, development of new
mouse models is needed to improve our knowledge on the
mechanisms that drive the disease and possibly provide new
therapeutic targets. In line with this, multiple zebrafish models
of metastatic hepatocellular carcinoma have been established
in recent years [65]. These models exhibit inflammation and
cancer-induced skeletal muscle wasting and could thus be
useful in high-throughput in vivo screening for anti-
metastatic or anti-cachectic drugs. Recently, a new mouse
model with metastases to the lungs has been developed by
utilizing human papilloma virus (HPV) and oropharyngeal
squamous cell carcinoma cell line [66]. This model recapitu-
lates key features of cancer cachexia, as evident by progres-
sive loss of body mass, functional disability, systemic inflam-
mation, and muscle wasting mediated by activation of ubiqui-
tin proteasome and autophagy pathways. A new murine mod-
el of breast cancer with spontaneous metastases has been de-
veloped recently by orthotopic injection of Bard1-deficient
breast cancer cells that spontaneously metastasize to the lung
[32]. Affected mice developed cancer-associated muscle atro-
phy, demonstrating the suitability of this model for future
translational research.

Therapeutic Targeting of Cancer-Induced Muscle
Defects

A number of promising drug candidates are being assessed for
cancer cachexia [67–72]. Specifically, activin type 2 receptor
(ActRIIB) or its ligands such as myostatin, GDF11, and
activins are attractive therapeutic targets considering their im-
portant role in the regulation of muscle growth. Many myo-
statin inhibitors failed in clinical trials in recent years; howev-
er, new potential candidates such as IMB0901 exhibited
promising results in rescuing muscle atrophy in cancer ca-
chexia [73]. Furthermore, inhibition of ActRIIB signaling by
ActRIIB-Fc effectively preserved skeletal muscle mass and
strength in mice bearing advanced colorectal cancers [74].
Moreover, dual anti-ActRIIA/IIB antibody treatment reduced
serum levels of IL-6 and reversed cachexia in mice,
supporting a functional link between activin A and IL-6 sig-
naling pathways observed in ovarian cancer cells [75]. In

addition, blocking type I receptors ALK4/5 of the TGF-β
family preserved cancer-associated muscle loss and downreg-
ulated catabolic processes in the muscle [76]. Endogenous
antagonist follistatin-like 3 (FSTL3) binds to activins,
GDF8, and GDF11 [77], without affecting other ligands of
the TGF-β family. Indeed, systemic administration of mono-
valent human FSTL3 Fc-fusion protein (mono-FSTL3-Fc) re-
sulted in increased muscle mass in mice, representing a prom-
ising therapeutic option for muscle loss due to its more spe-
cific action and less adverse effects than ActRIIB-Fc [77]. In
cancer cachexia, inhibition of Activin A preserved muscle
mass and MEF2C expression, which is involved in the regu-
lation of MYHC7 expression, one of the myosin heavy-chain
(MYHC) isoforms in muscle [78]. Inhibition of GDF15–
GFRAL signaling bymonoclonal antibody 3P10 showed ben-
eficial effects on lipid metabolism and reversed cancer ca-
chexia in mice [79]. Anti-cachectic and anti-tumorigenic ef-
fects of mitochondrial assembly receptor (MasR) agonist
AVE 0991 were identified [80]. In addition, administration
of mitochondria-targeting antioxidant mitoquinone preserved
skeletal muscle mass and strength, normalized mitochondrial
homeostasis, and improved oxidative metabolism, which con-
tributed to decreased intramuscular fat infiltration in cancer
cachexia [81•]. Another mitochondria-targeted peptide SS-
31 had only partial effect on preventing body wasting, but
improved mitochondrial activity and mostly modulated liver
metabolome by rescuing the levels of glucose and glycogen
that are usually reduced in cachexia[82].

Bone Defects in Metastatic Disease

Early Stages of Bone Metastasis and the Pre-
Metastatic Niche

Metastasis starts in the primary site and involves cancer cell
intrinsic and extrinsic events. Besides changing their pheno-
type to an invasive, mesenchymal-like through epithelial-
mesenchymal transition (EMT), accumulating evidence sug-
gests that primary tumors establish a permissive pre-
metastatic niche within the bone by secreting tumor-derived
factors such as growth factors and extracellular vesicles
(EVs), by modifying extracellular matrix and recruiting bone
marrow-derived cells (BMDCs) [83]. Various cytokines such
as epidermal growth factor (EGF), hepatocyte growth factor
(HGF), platelet-derived growth factor (PDGF), and TGF-ß are
involved in EMT induction including transcription factors
Snail, Slug, Twist, and ZEB1 [84]. In addition, EMT is asso-
ciated with suppressed anti-tumor immune response [85].
Recently, oncogene MCT-1 was found to promote IL-6/IL-
6R/STAT3 axis that leads to increased EMT process and can-
cer stemness but also affects the tumor immunity as seen by
increased polarization of macrophages toward the
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immunosuppressive M2 phenotype which drive the invasive-
ness of breast cancer cells [86]. Tumor-associated macro-
phages (TAMs), M1 and M2 macrophages, participate in the
formation of the tumor microenvironment, immunosuppres-
sion, and regulation of tumor growth [87]. Moreover, M2
macrophages were found to secrete chemokine CCL5, which
promotes prostate cancer cell invasion, migration, and EMT
via activating β-catenin/STAT3 pathway, whereas CCL5
knockdown suppresses tumor growth and bone metastases
[88]. Circulating tumor cells escape detection by the immune
system and settle within the bone marrow microenvironment,
where they interact with the osteoblastic niche through
connexin 43 gap-junctions, thereby activating calcium signal-
ing and cancer cell growth in bone [89]. In addition, a key role
of CXCL12/CXCR4 signaling axis in mediating cancer cell
homing to bone has been previously established [83].

Significant advances have been made over the recent years
in understanding the importance of the pre-metastatic niche.
Breast cancer cell–derived EVs are recruited by the bone mi-
croenvironment where they increase the ability of osteoblasts
to secrete cytokines and EVs to induce osteoclast formation
and metastasis-induced osteolysis [90]. EVs also transfer
miR-21 to osteoclasts and promote osteoclast differentiation
via regulating programmed cell death 4 (PDCD4) expression
[91•]. Xu et al. showed that novel circRNA circIKBKB pro-
moted breast cancer bone metastases by inducing the bone
pre-metastatic niche through NF-κB signaling pathway [92].
Therefore, disrupting the communication between breast can-
cer cells and the bone microenvironment would present an
interesting future therapeutic strategy for bone metastases.
Moreover, breast cancer–derived factors support attachment
and survival of disseminated tumor cells to the premetastatic
niche in bone by inducing changes in bone mineral properties
[93]. Similarly, R-spondin 2 (RSPO2) and RANKL, secreted
from breast cancer cells, are involved in the recruitment of
osteoclast progenitors and formation of osteoclastic pre-
metastatic niche [94]. They bind to the LGR4 receptor and
regulate the expression of Dickkopf-related protein 1
(DKK1), a soluble inhibitor of Wnt signaling. Recently, cells
from the immune system such as dendritic cells were shown to
differentiate to osteoclast progenitors in response to T cell–
mediated release of cytokines, such as RANKL, while inter-
leukin 23 (IL23) produced by differentiated dendritic cells
further maintains T cell pro-osteoclastogenic activity in the
bone marrow [95]. This keeps a positive feedback loop of
bone destruction and contributes to the formation of the pre-
metastatic niche within the bone microenvironment before
tumor cell homing.

Disseminated cancer cells can enter an extended period of
proliferative dormancy within the bone metastatic niche and
become reactivated by escaping cell cycle arrest [96–98].
Dormant breast cancer cells compete with long-term hemato-
poietic stem cells for the occupancy of the endosteal niche,

which is enriched in spindle-shaped N-cadherin+/CD45− os-
teoblasts (SNOs) and keeps tumor cells in quiescent state in a
Notch2-dependent manner [99]. Inhibition of the Notch2
pathway has been suggested to reactivate and mobilize dor-
mant breast cancer cells from the endosteal niche by releasing
the interaction between dormant cancer cells and SNOs.
Consequently, cancer cells can exit the bone microenviron-
ment and colonize distant sites such as the liver. Recently,
N-Cadherin was found to play an essential role in maintaining
breast cancer cell dormancy in the bone, by increasing their
capacity to adhere to SNOs [100]. Moreover, a group of
genes, such as Cfh, Gas6,Mme, and Ogn, is highly expressed
in dormant breast cancer cells in bone and correlated with
recurrence-free survival in breast cancer patients [101].
Disseminated breast cancer cells residing in bone marrow
perivascular niche are protected from chemotherapy by their
integrin-mediated interactions with molecules including von
Willebrand Factor (VWF) and vascular cell adhesion
molecule-1 (VCAM-1) [102]. Disruption of these interactions
with integrin inhibitors sensitized cancer cells to chemothera-
py and reduced bonemetastases. Accordingly, integrinβ3 has
been shown to promote chemoresistance in bone metastases,
whereas mTORC1 inhibitor therapy enhanced the chemother-
apy effect as evident by decreased bone metastases and
cancer-induced bone loss [103].

Cancer-Induced Bone Destruction

Adult bone is continually remodeled by the processes of bone
resorption and bone formation [104]. Following successful
seeding of disseminated cancer cells in the bone, tumor cells
interact with the bone microenvironment leading to tumor
growth, which can elicit osteoclast-mediated bone resorption
or osteoblast-mediated bone formation. Most common
osteolytic metastases are caused by bone resorption, where
cytokines IL-1 and IL-6 and PTHrP and RANKL play crucial
role in osteoclast formation and activation [83]. Continuous
release of cytokines and growth factors from the bone matrix
further supports osteoclast activation and tumor growth via
various signaling pathways including the RANK/RANKL/os-
teoprotegerin (OPG)-axis, canonicalWNT, and bonemorpho-
genetic protein (BMP)/TGF-ß signaling pathways [105].
Conversely, osteoblastic metastasis in prostate cancer results
from excessive bone formation activated bymany factors such
as endothelin-1 (ET-1), BMPs, PDGF, and TGF-β [83].

Cancer cells preferentially colonize the trabecular region of
bone enriched with osteoblasts and micro-vessels [106].
Cancer cell-osteoblast interactions within the bone microenvi-
ronment are essential for bone metastasis progression, as os-
teoblasts are known to protect breast cancer cells from stress-
induced death by both paracrine and juxtracrine signals and
therefore can limit the number of cancer-supportive niches
[107]. However, Kolb et al. demonstrated that a subpopulation

Current Osteoporosis Reports (2022) 20:273–289 277



of osteoblasts in the bone microenvironment is involved in the
suppression of breast cancer cell growth via decorin and NOV
(CCN3) proteins [108]. Furthermore, these osteoblasts pro-
duce EVs enriched with miR-148a-3p, which further sup-
presses bone metastatic breast cancer proliferation partly
through extracellular signal-regulated kinase 1/2 (ERK1/2)
signaling [109]. We have previously identified an important
role of TG-interacting factor-1 (Tgif1) in mediating interac-
tions between breast cancer cells and osteoblasts in the bone
marrow microenvironment [110]. Absence of Tgif1 in osteo-
blasts resulted in suppressed breast cancer cell migration and
bone metastases, which is mediated through increased
Semaphorin 3E (Sema3E) expression. In addition, acidosis
may contribute to the colonization of breast cancer cells in
the bone by promoting extracellular matrix (ECM) organiza-
tion [111] and by interfering with bone remodeling [112].
Acidic environment recruits osteoclast precursors and stimu-
lates osteoblasts to secrete the pro-osteoclastogenic factors
RANKL and macrophage colony-stimulating factor (M-
CSF) and inflammatorymediators TNF, IL-6, and IL-8, which
promote osteolysis. Similarly, ERK1/2 activation in both can-
cer cells and osteoblasts induced inflammatory phenotypic
conversion of osteoblasts leading to secretion of cytokines
and growth factors, which promoted osteoclastogenesis and
cancer growth. This effect was reverted following ERK1/2
inhibition by trametinib [113].

Growth Factors Mediating Bone Defects

The bone microenvironment is rich in growth factors, which
stimulate tumor growth and metastasis. Recently, it has been
demonstrated that tumoral TGF-β signaling has a role in pro-
moting bone metastatic progression and osteolysis in ER+
breast cancer through stimulating the secretion of osteolytic
factors such as PTHrP [114]. In addition, TGF-β-induced
DACT1 suppressed WNT signaling and promoted breast
and prostate cancer bone metastasis [115]. In both prostate
and breast cancer, TGF-β was found to stimulate tumor mi-
croenvironment by modulating the recruitment of bone
marrow-derived mesenchymal stem cells (BMSCs) into the
tumor, mediated by transmembrane protein neural cadherin
(N-cadherin) [116,117]. More recently, prostate cancer–
derived GDF15 was found to increase the osteoclastogenic
potential of osteoblasts, which secrete RANKL and CCL2 to
promote bone resorption [118]. In addition, prostate cancer
cells induced osteocytes to secrete GDF15 into the bone mi-
croenvironment which, in turn, stimulated early growth re-
sponse 1 (EGR1) expression in prostate cancer cells and pro-
moted tumor progression [119]. BMPs are actively involved
in the tumor development and bone metastatic progression by
mediating interactions between cancer cells and the bone en-
vironment [120,121]. Previously, it was reported that condi-
tional deletion of BMPR1a in myeloid cells suppresses

prostate tumor growth and changes macrophage polarization
[122]. In myeloma bone disease, inhibition of BMP signaling
prevented bone loss by reducing osteoclastogenesis and pro-
moted osteoblast differentiation by reducing the concentration
of sclerostin the bonemarrow [123]. Pharmacologic inhibition
of BMP signaling by small molecule antagonist DMH1 in
prostate cancer models of bone metastasis restricted cancer
cell colonization to bone in immunodeficient mice; however,
in mice with intact immune system, DHM1 had no effect on
tumor growth and bone health [124]. Interestingly, numerous
studies identified a dual role of BMPs in cancer development
with BMPs acting both as tumor promoters or suppressors
[125]. Recently, inhibition of the BMP pathway by LDN-
193189 was shown to enhance bone metastasis development
in breast cancer [126], suggesting future studies are needed to
elucidate the role of BMP signaling in cancer patient
treatment.

The Role of Inflammation and Immune
Suppression in Bone Metastasis

Bone metastasis formation and progression are associated
with systemic inflammation and immune suppression
[127,128]. Numerous studies have identified key roles of im-
mune cells such as macrophages, neutrophils, dendritic cells,
natural killer cells, and T cells in the formation of bone me-
tastatic niche. In advanced breast cancer, monocyte-derived
macrophages promote bone metastasis growth in an IL4R
signaling-dependent manner [129], indicating that inhibition
of macrophages and IL4Rmay lead to a new potential therapy
targeting bone metastasis. Neutrophil infiltration in bone re-
sults in enhanced survival of the metastatic cells by weakening
cytotoxic CD8+ T cells responses in advanced breast cancer
[130]. Mechanistically, downregulation of catenin delta 1
(CTNND1) in metastatic bone lesions promoted tumor re-
cruitment to bone by upregulating CXCL12/CXCR4 axis
via PI3K/AKT/HIF-1α pathway, while recruitment of neutro-
phils in the bone was stimulated by secretion of GM-CSF and
IL-8. This was not in accordance with a previous report dem-
onstrating the anti-tumor role of neutrophils in advanced pros-
tate cancer [131]. Costanzo-Garvey et al. showed that neutro-
phils induce apoptosis of disseminated cancer cells; however,
during bonemetastasis progression, neutrophils gradually lose
the cytotoxic effect on prostate cancer cells. Recently,
estrogen-related receptor alpha (ERRα) was shown to inhibit
metastasis progression of breast cancer cells by activating im-
mune response in the bone [132]. Recruitment of CD8+ T
cells to bone was enhanced by the production of chemokines
CCL17 and CCL20, while suppression of TGF-ß, a key re-
pressor of T cell activity, resulted in increased antitumor cy-
totoxic response in the bone. In addition, eosinophils were
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found to induce tumor cell migration and metastasis in bone
through CCL6-CCR1 signaling [133].

Secreted Molecules and Extracellular Vesicles
in Bone Metastases

Cytokines and chemokines are involved in bone metastatic
progression at different stages [134]. IL-11 plays an essential
role in breast cancer bone metastases by inducing osteoclas-
togenesis via JAK1/STAT3 signaling pathway independent of
RANKL [135]. Accordingly, blocking of STAT3 activation
reduced osteolysis and bone metastatic progression. In addi-
tion, neutrophil-derived IL-4 plays a key role in osteolysis in
colorectal cancer (CRC) with bone metastases [136]. IL4/
IL4Rα signaling activated ERK pathway, which further stim-
ulated the proliferation of osteoclast precursors in bone me-
tastases. Treatment with Ravoxertinib, an inhibitor of the ERK
pathway, prevented IL4-mediated bone resorption. Bone
marrow–derived IL-1ß stimulates breast cancer metastatic col-
onization in the bone microenvironment by promoting WNT
signaling via NF-κB and CREB [137,138]. Hence, targeting
IL-1β-WNT signaling by IL-1 receptor inhibitors such as
Anakinra prevented colonization of disseminated cancer cells
into bone and decreased the overall metastatic burden.
Consistently, formation of the bone metastatic niche was re-
cently demonstrated to be regulated through NAT1/NF-kB/
IL-1ß axis [139]. Tulotta et al. demonstrated a dual role of
IL1ß, where microenvironment-derived IL-1ß promoted the
progression of breast cancer metastases in bone, whereas it
inhibited the growth of primary tumor by recruiting innate
immune cells with possible anti-tumor roles [140]. Only com-
bined therapy of anakinra with doxorubicin and zoledronic
acid exhibited anti-inflammatory effect and markedly
inhibited both primary tumor growth and metastatic recur-
rence in bone. MSC-secreted IL-28 stimulated apoptosis of
bone metastatic prostate cancer cells through STAT1 signal-
ing; however, following chronic exposure to IL-28, certain
populations of cancer cells became resistant to apoptosis and
shifted to STAT3 signaling [141]. Accordingly, STAT3 inhi-
bition resulted in a decreased prostate cancer progression in
bone and may be responsible for desensitizing prostate cancer
cells to chemotherapy. By using ex vivo bone metastasis cul-
ture, chemokine CXCL5 was found to promote breast cancer
colonization in bone and could contribute to the switch from a
dormant state [142].

Recently, EVs have been identified as important mediators
of crosstalk between cancer cells and the bone microenviron-
ment, enabling the transfer of active molecules to distant sites
[143,144]. Furthermore, EVs are involved in the formation of
the pre-metastatic niche, dissemination of cancer cells to metas-
tatic sites, and cancer cell growth and survival [145]. The role of
EVs has been extensively reported in bone metastatic prostate

cancer. Prostate cancer–derived EVs target bone marrow cells
leading to activation of NF-κB signaling and increased osteo-
clast differentiation, thereby further enhancing metastatic tumor
burden in a cholesterol-dependent manner [146]. Interaction
between the long non-coding RNA NORAD and miR-541-3p
promoted bone metastases in prostate cancer by upregulating
the release of EVs enriched with pyruvate kinase M2 (PKM2)
from prostate cancer cells to BMSCs [147]. Moreover,
exosomal PKM2 is transferred to BMSCs where it upregulates
the production of CXCL12 in a HIF-1α-dependent fashion and
subsequently contributes to prostate cancer growth and progres-
sion of bone metastasis [148]. In addition, multiple myeloma-
derived exosomes are reported to stimulate osteoclastogenesis,
acting directly through the IRE1α/XBP1 axis or via
amphiregulin (AREG)-mediated activation of EGFR pathway
in osteoclast progenitors followed by the release of pro-
osteoclastogenic MSC-derived IL-8 [149,150].

Among the biomolecules transported by EVs, non-
coding RNAs including lncRNAs and miRNAs exhibit
various roles in metastatic bone disease [151,152].
Recent studies demonstrated that several miRNAs are in-
volved in the regulation of osteoclasts and osteoblasts dur-
ing bone metastasis progression in breast, prostate and co-
lorectal cancer [153–161]. Furthermore, these miRNAs
show a correlation with disease progression and can be
used as biomarkers for cancer progression [162–166]. In
breast cancer, the novel lncRNA DGUOK-AS1 was iden-
tified to promote cancer progression and bone metastasis
by decreasing tumor suppressor miR-204-5p and stimulat-
ing the secretion of IL-11 [167]. In bone metastasis of
prostate cancer, novel tumor suppressive miRNAs, miR-
582-3p, and miR-582-5p inhibit bone metastases through
inactivation of NF-κB signaling [168,169], whereas miR-
532-3p and miR-204-5p by suppressing TGF-ß signaling
activity [170], suggesting a strong potential as therapeutic
target. Moreover, Dai et al. demonstrated the important
role of TGF-ß-dependent double-negative feedback loop
between miR-33a-5p and ZEB1 in the promotion of pros-
tate cancer bone metastasis [171]. Exosomal miR-378a-3p
promoted prostate cancer progression and osteolysis by
targeting Dyrk1a/Nfatc1 pathway in bone marrow macro-
phages leading to increased secretion of angiopoietin like 2
(Angptl2) into the bone microenvironment [172]. Ma et al.
demonstrated that prostate cancer-derived EVs deliver
miR-152-3p to osteoclasts and promote bone osteolysis
by targeting osteoclastogenic regulator MAFB [173]. In
hepatocellular carcinoma, lnc34a was identified to promote
bone metastasis acting through suppression of miR-34a,
which inhibits TGF-ß/Smad signaling and its downstream
targets, connective tissue growth factor (CTGF) and IL-11
[174]. In non-small cell lung cancer, exosomal lncRNA-
SOX2OT promoted bone metastases by targeting TGF-β/
pTHrP/RANKL signaling pathway in osteoclasts [175].
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Novel Approaches to Treat Bone Metastases

Animal models of skeletal metastasis are essential for under-
standing the pathogenesis of cancer bone metastases. There
has been an increased interest in generating new three-
dimensional (3D) in vitro models including patient-derived
xenograft models, organoid, and scaffold models that can
mimic native bone microenvironment [176–185]. In addition,
numerous new compounds have been evaluated for their ef-
fect and therapeutic potential on metastatic bone disease
[186,187,196–198,188–195]. Currently approved therapeutic
agents for bone metastases include chemotherapy, radiothera-
py, bisphosphonates, and anti-RANKL therapy [199].
Recently, a series of experiments were conducted to apply the
technology of induced tumor-suppressing cells (iTSCs) to bone
cells, MSCs, and cancer cells, where activation of oncogenic
signaling such as WNT results in production of tumor-
suppressing secretomes [200]. WNT activation by LRP5/ß-ca-
tenin overexpression in osteocytes generated tumor-
suppressive secretomes, which successfully suppressed tumor
growth and bone destruction by downregulating chemokines
CXCL1 and CXCL5, upregulating tumor suppressors such as
P53 and suppressing the expression of oncogenic genes such as
MMP-9, Runx2, TGFβ, and Snail [201,202]. Similar anti-
tumor capability was observed in MSCs generated by overex-
pressing LRP5, β-catenin, Snail, or Akt [203]. Activation of
WNT signaling in osteoclasts, osteoblasts, and cancer cells re-
sulted in their conversion to tumor-suppressive cells with
secretomes enriched with Hsp90ab1, enolase 1 (Eno1), moesin
(MSN), and ubiquitin C (Ubc), which acted as atypical tumor-
suppressors [204–206]. Osteoclast secretome-derived
Hsp90ab1 and Eno1 inhibited tumor progression by suppress-
ing TGF-ß signaling and interacting with CD44, facilitating
tumor cell killing by natural killer (NK) cells [204,207]. They
also exhibited bone-protective roles as osteoclast secretome
inhibited RANKL-stimulated osteoclast differentiation and
stimulated osteoblast differentiation. Collectively, novel iTSC
technology and generation of anti-tumor secretomes represent a
potential therapeutic approach for bone metastases. In recent
years, a nanoparticle-based drug delivery system (DDS) is often
used to deliver different therapeutics to bone [208,209]. Huang
et al. showed that nanoparticles loaded with cisplatin and
zoledronate significantly inhibited tumor growth and bone re-
sorption in breast cancer bone metastasis [210]. Furthermore,
gold clusters suppressed breast cancer-induced osteoclastogen-
esis and osteolysis, demonstrating their potential for treating
breast cancer bone metastases [211].

Conclusions

Here, we presented an overview of recent discoveries related
to metastatic bone and muscle disease. Muscle and bone share

close mechanical and biochemical relationship, giving rise to
muscle-bone crosstalk with both tissues releasing either
muscle-derived myokines or bone-derived osteokines that
positively or negatively affect bone and muscle metabolism
(Fig. 1). Hence, pharmacological approaches for bone health
could be efficient in preserving muscle mass and function in
cancer cachexia. Recently, it was demonstrated that tumor-
derived RANKL in cancer-bearing mice is associated with
increased bone turnover and skeletal muscle atrophy, while
anti-RANKL or bisphosphonate treatment preserved bone
and partially prevented the loss of muscle mass and strength
[212••]. Moreover, the administration of bisphosphonates in
mice exposed to a chemotherapeutic agent had beneficial ef-
fect on muscle mass and strength, acting through bone pres-
ervation and inhibiting the release of bone-derived factors
upon bone resorption [213]. Therefore, a better understanding
of molecular pathways implicated in cancer-mediated bone
resorption and muscle wasting may provide new insights for
discovering new antiresorptive, anti-cachectic and possibly
anti-cancer therapeutics.

Fig. 1 Bone-muscle crosstalk in bone metastasis. Bone-derived
osteokines and muscle-derived myokines mediate the bone-muscle
interactions in physiological and pathological conditions. In bone
metastasis, several cytokines are released from the bone matrix (e.g.,
TGF-β) that impair muscle function and promote tumor growth.
Furthermore, local such as RANKL promote bone destruction and
reduce muscle strength. Thus, preventing pathological bone resorption
could be an effective therapeutic strategy to preserve not only the bone
but also muscle health in metastasis
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