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A B S T R A C T   

Breast cancer affects one in eight women during their lifetime. Although diagnostic and therapeutic options have 
improved, recurrence, metastasis, and therapeutic resistance remain clinical challenges, which affect life quality 
and prognosis. The mevalonate pathway is an essential part of cellular homeostasis by providing a number of 
essential isoprenoid products including cholesterol. However, the disturbance of this pathway paralleled by 
increased bioavailability of its products and their direct involvement in several steps of tumorigenesis has 
highlighted the mevalonate pathway as a promising hub in cancer treatment. In this review, we will specifically 
discuss how the mevalonate pathway affects breast cancer biology in terms of supporting and modulating soluble 
and cellular factors and distinct steps of tumorigenesis. We will further summarize antitumor effects of the 
mevalonate pathway-inhibiting drugs, statins and amino-bisphosphonates, in breast cancer and discuss how they 
are used for future precision therapy.   

1. Introduction 

Breast cancer (BrCa) affects one in eight women during the course of 
their lifetime and approximately 400,000 new cases are diagnosed in 
Europe each year [1,2]. Improved diagnostic and therapeutic tools have 
strongly increased the probability of affected patients to survive within 
the last three decades [1]. Current therapies for BrCa include surgery, 
chemotherapy, radiation, endocrine therapy as well as epidermal 
growth factor 2 (ERBB2 or HER2)-targeted treatments [3]. Clinical 
studies on the inclusion of novel immunotherapies and targeted thera
pies into established concepts are underway [4]. However, long-term 
treatment of BrCa is still subject to several challenges. Recurrence of 
the disease by local regrowth of tumors or by metastases within distant 
organs represents a significant burden [1]. As the overall survival of 
recovered patients with primary BrCa continuously increases, the 

occurrence of metastases years after initially successful treatment be
comes increasingly relevant. Secondly, BrCa is characterized by exten
sive molecular and genomic inter- and intratumoral heterogeneity that, 
together with the unneglectable contribution of the local tumor micro
environment (TME), impedes therapeutic intervention [5,6]. Thirdly, 
treatment approaches for the aggressive triple-negative BrCa (TNBC) 
subtype are still limited as these tumors are not sensitive to endocrine 
therapies such as tamoxifen or aromatase inhibitors (AI) [7]. Finally, a 
number of mechanisms contribute to acquired or de novo endocrine 
resistance, which blunts the initial efficacy of antihormonal treatments 
[8]. Given these challenges, novel therapeutic options to expand the 
current armament are highly desired. As a central part of cellular ho
meostasis and metabolism, the mevalonate pathway has been repeatedly 
in and out of the focus as a potential anti-tumor target in almost all types 
of malignancies, including BrCa for the last two decades [9]. This has led 
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to an accumulation of data, which are sometimes difficult to interpret. 
With an increasing understanding of this complex pathway, we review 
on the emerging pleiotropic mechanisms by which the mevalonate 
pathway affects different steps of BrCa tumorigenesis and how these 
may be utilized to improve clinical management of patients with BrCa. 

2. Role and regulation of the mevalonate pathway 

2.1. Providing essential products and modulating homeostasis 

The mevalonate pathway (Fig. 1) is a pivotal part of cellular physi
ology by providing isoprenoid precursors as building blocks for the 
synthesis of several essential products [10,11]. Here, acetyl-coenzyme A 
(acetyl-CoA) is an indispensable substrate that can be provided from 
glycolysis and fatty acid oxidation, or by glutamine and acetate con
sumption, all of which can be increased in cancer [12]. Furthermore, 
acetyl-CoA is provided by metabolization of citrate from the tricarbox
ylic acid cycle via the ATP citrate lyase (ACLY) [13] [–] [15]. Two key 
enzymes of the mevalonate pathway are the 3-hydroxy-3-methylglutar
yl-CoA reductase (HMGCR) that is responsible for mevalonate produc
tion [16] and the farnesyl diphosphate synthase (FDPS) which is critical 
for the production of farnesyl pyrophosphate (FPP) and allows for sub
sequent geranylgeranyl pyrophosphate (GGPP) production [15,17]. FPP 
and GGPP are activated substrates for specific posttranslational modi
fications called farnesylation and geranylgeranylation. Both mecha
nisms are referred to as “protein prenylation”, a process that ensures 
membrane anchoring and trafficking of a countless number of proteins 
[16,18,19]. Moreover, FPP is metabolized to cholesterol via squalene 
production [20]. Cholesterol is critical for membrane synthesis and 
intramembranous signal transduction, protein trafficking and cellular 
polarization as well as for the production of steroids, vitamin D, and bile 

acids [11,21] [–] [23]. The cholesterol pool also drives sex hormone 
production and therefor allows for their effects on several organ systems 
including control of mammary gland development during puberty, 
estrous cycles, and pregnancy [24]. Whereas ubiquinone is involved in 
mitochondrial electron transport and has antioxidantic effects, dolichol 
plays an important role in the glycosylation of proteins [16,25]. A 
number of additional contributions apply to immunity where the 
mevalonate pathway mediates trained immunity and supports survival 
and function of effector and regulatory T cells, macrophages, and den
dritic cells [11,13,15,26] [–] [28]. Mutations of specific enzymes or 
altered cholesterol metabolism are associated with inflammatory 
symptoms and the pathogenesis of osteoarthritis [29,30]. Additional 
organs and functions that are affected and controlled by the mevalonate 
pathway include the brain, emotional and cognitive mechanisms, fat 
metabolism, and the maturation of autophagosomes [16,31] [–] [34]. 

2.3. Regulating the mevalonate pathway 

The whole cascade of the mevalonate pathway includes a number of 
enzymes, cofactors, and intermediate products, all of which are tightly 
regulated by feedback mechanisms. High intracellular or circulating 
levels of cholesterol are toxic and associated with unwanted side effects 
such as oxidative damage, impaired function of signaling proteins, and 
cardiovascular diseases [35] [–] [41]. Particular regulations are ensured 
by intermediate or end products of the mevalonate pathway that in turn 
inhibit the activity and accelerate protein degradation of several key 
enzymes by negative feedback mechanisms on transcriptional and 
translational level or by affecting specific cofactors [10,42] [–] [44]. A 
well-known restorative feedback loop comprises the activation of sterol 
regulatory element binding proteins (SREBP). These factors are acti
vated when intramembranous sterol levels are reduced and, in turn, 

Fig. 1. Overview and regulation of the mevalonate pathway. The mevalonate pathway provides several essential products such as cholesterol by a series of 
enzymatic reactions starting with acetyl-coenzyme A (acetyl-CoA). Acetyl-CoA can be derived from glucose, glutamine, acetate, and fatty acid metabolism by the 
involvement of the tricarboxylic acid (TCA) cycle. Extracellular cholesterol is taken up by low-density lipoprotein receptor (LDLR). Upon decreasing levels of 
intracellular cholesterol, sterol regulatory element binding proteins (SREBP) are activated by endoplasmic reticulum (ER) and Golgi apparatus-mediated processing. 
SREBP activity itself is regulated by several cellular conditions including mammalian target of rapamycin (mTOR) signaling and the mutational status of p53. 27- 
hydroxycholesterol (27-HC); 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); ATP citrate lyase (ACLY); farnesyl diphosphate synthase (FDPS); mevalonate 
kinase (MVK); phosphoinositide 3-kinase (PI3K); squalene epoxidase (SQLE): Created with Biorender.com. 
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activate the gene expression of the HMGCR and the low-density lipo
protein receptor (LDLR, Fig. 1). As a consequence, both the mevalonate 
pathway as well as LDLR-mediated endocytosis of extracellular LDL are 
fueled to restore the intracellular levels of cholesterol [9,36,41,45] [–] 
[47]. 

3. Dysregulation of the mevalonate pathway in breast cancer 
tumorigenesis 

There is consensus that metabolic reprogramming is a key element in 
tumor initiation and progression and a well-established target in 
emerging therapeutic concepts [48] [–] [50]. The mevalonate pathway 
is involved in protein prenylation, cholesterol production, immuno
surveillance, inflammation, and autophagy. All these aspects potentially 
interfere with diverse steps of tumorigenesis, are involved in tumor cell 
survival and in the function of the surrounding TME [50]. We will now 
summarize some specific contributions of the mevalonate pathway to 
BrCa (Fig. 2). 

3.1. Cholesterol drives BrCa tumorigenesis 

A number of genetic and non-genetic predispositions and risk factors 
have been identified for BrCa [51] [–] [53]. Interestingly, obesity and 
high levels of cholesterol are associated with an increased risk of 
developing BrCa and with reduced survival [54] [–] [59]. Moreover, 
cholesterol is a sex steroid precursor. In BrCa tissue estradiol levels can 
be massively upregulated by the overexpression of CYP19A1 encoding 
for the aromatase enzyme [60]. In estrogen receptor (ER)-positive BrCa, 
tumor cell growth, proliferation, and survival are dependent on 
ER-signaling, explaining the success story of endocrine treatment con
cepts that have been introduced for this group of patients [60,61]. Given 
the involvement of cholesterol in sex hormone synthesis, many studies 
prompted to identify the role of this molecule in BrCa development and 
progression. 

Tumor cells need higher cholesterol levels for proliferation, cell 
cycle, membrane synthesis, as well as the regulation of cell signaling, 

adhesion, and apoptosis by lipid rafts [22,23,56,62] [–] [64]. High 
levels of cholesterol as well as increased cellular production and uptake, 
high expression of the LDLR and decreased efflux of cholesterol accel
erate tumor growth, migration, metastasis, cancer stemness, and 
angiogenesis and are associated with a shorter survival in preclinical 
models of BrCa and when assessing patient cohorts [65–73]. However, 
clinical studies on cholesterol and BrCa are controversial and need 
careful interpretation, especially as some studies show no or even an 
inverse association [57,74]. It seems critical to separate effects of 
different metabolic cholesterol types and to further assess their role after 
stratifying patients into clinical subtypes, for example according to the 
menopausal or the tumor hormone receptor status [52,65,74–76]. 

Mechanistically, cholesterol is undergoing metabolization into de
rivatives such as oxysterols that can be abundantly produced within the 
TME, where they markedly affect cellular players [77]. One of them, 
27-hydroxycholesterol (27-HC), alters ERβ-signaling and fosters growth 
and metastasis of ER-positive BrCa cells by mechanisms that involve the 
mobilization of tumor-promoting immune cells, the induction of 
angiogenesis, and the inhibition of the tumor suppressor p53 [71, 
78–82]. High expression levels of 27-HC and its corresponding enzyme 
CYP27A1, but low expression of its catabolizing enzyme, CYP7B1, are 
associated with poor survival in BrCa patients [56,78,79,83] [–] [85]. 
CYP27A1 is expressed in myeloid cells including macrophages where 
27-HC production shifts their phenotype into an immune-suppressive 
one that inhibits T cell expansion and activation [86]. Intriguingly, 
reprogramming cholesterol and 27-HC production is also a strategy by 
which BrCa cells evade endocrine therapies such as AI [87] [–] [89]. 
Cholesterol and mevalonate also drive alterations in the metabolic ac
tivity of ER-positive and TNBC cells and induce resistance to tamoxifen 
and doxorubicin [72]. Additional cholesterol and 27-HC-driven mech
anisms include the interaction with numerous other pathways and reg
ulators that are implicated in tumorigenesis such as liver X receptors, 
growth factor receptors, nuclear factor ‘kappa-light-chain-enhancer’ of 
activated B-cells (NFκB) and Akt signaling, or oncogenic micro-RNAs 
[50,67,90,91]. Moreover, cholesterol is convertible into additional 
oncometabolites that drive BrCa proliferation and migration via the 

Fig. 2. The role of the mevalonate pathway in breast cancer. The mevalonate pathway affects several steps of breast cancer tumorigenesis including effects on 
primary tumor growth, epithelial-to-mesenchymal transition (EMT), metastasis, and the interconnection with additional signaling pathways. Furthermore, upre
gulation of the mevalonate pathway and its corresponding products is associated with therapeutic resistance and the modulation of the local tumor microenvi
ronment. 27-hydroxycholesterol (27-HC); 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); ATP citrate lyase (ACLY); cell division cycle 42 (CDC42); 
cholesterol-5,6-epoxide (5,6-EC); estrogen receptor (ER); farnesyl diphosphate synthase (FDPS); mammalian target of rapamycin (mTOR); nuclear factor ‘kappa- 
light-chain-enhancer’ of activated B-cells (NFκB); phosphoinositide 3-kinase (PI3K); squalene epoxidase (SQLE), sterol regulatory element binding protein (SREBP); 
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). Created with BioRender.com. 
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glucocorticoid receptor [92,93]. Reducing cholesterol availability and 
absorption and 27-HC production as well as increasing its cellular efflux 
and activating LDLR degradation have shown promising benefits in 
preclinical models of primary and metastasizing BrCa [71,94–98]. These 
lines of evidence highlight the undisputed role and the great complexity 
of cholesterol in different stages of BrCa tumorigenesis. 

3.2. The dysregulation of the mevalonate pathway and interconnected 
signaling partners in BrCa tumorigenesis 

Importantly, cholesterol is not the only mevalonate pathway-derived 
protumorigenic factor. Indeed, mevalonate and N-glycosylation are 
associated with BrCa tumor growth and metastasis [99] [–] [101]. It is 
further worth emphasizing that not only intermediate or final products 
of the mevalonate pathway play distinct roles in cellular transformation. 
In addition, dysregulated enzymes and transcription factors of the 
pathway equally contribute to several steps of tumorigenesis by per
turbing the fine-tuned availability of these products and by interacting 
with additional signaling pathways such as p53, mammalian target of 
rapamycin (mTOR), Yes-associated protein (YAP) and transcriptional 
co-activator with PDZ-binding motif (TAZ) proto-oncogenes. In BrCa, 
ectopic HMGCR expression accelerates the growth of ER-positive BrCa 
cells proving the oncogenic potential of a mevalonate pathway disrup
tion [102]. An increased dependence on the mevalonate pathway is also 
observed upon BrCa stem cell differentiation and in tumor cells that 
develop resistance to tamoxifen and anti-HER2-targeted therapies such 
as lapatinib and trastuzumab [103] [–] [105]. In patients, high protein 
expression and activation levels of the mevalonate pathway enzymes 
HMGCR, FDPS, and squalene epoxidase are associated with worse 
clinical outcome [73,106] [–] [108]. Similarly, increased SREBP1/2 
expression reduces the metastasis-free survival and prognosis in patients 
with BrCa and preclinical models revealed a role for SREBP in osteolytic 
bone metastases [109,110]. High expression of ACLY is associated with 
worse prognosis and mediates docetaxel resistance [111]. Cancer sub
type- and patient subgroup-specific differences mirror the role of addi
tional confounders that affect the clinical consequence of an enzymatic 
dysregulation of the mevalonate pathway. For example, HMGCR protein 
expression in clinical BrCa samples can be associated with favorable 
parameters such as ERα-positivity, smaller tumor volume, tamoxifen 
response, and decreased proliferation [112] [–] [114] and correlates 
with survival benefits in ER-positive but not ER-negative patients [115]. 
However, other studies prove a connection between upregulated 
HMGCR expression and high proliferation index, ER negativity and 
worse prognosis and verify the oncogenic role of the HMGCR in exper
imental BrCa [102,107,116,117]. Importantly, the poor specificity of 
some HMGCR antibodies is likely to be responsible for such discrep
ancies [102,117]. 

Mechanistic investigations revealed that the tumor suppressor p53 
inhibits the mevalonate pathway by interfering with SREBP maturation, 
cholesterol export, and gene expression of enzymes involved in sterol 
production [107,118]. Vice versa, gain-of-function mutations of p53 
accelerate tumorigenesis by activating the mevalonate pathway in BrCa, 
a mechanism that can be reversed by targeting mutated p53 [107,119]. 
Additionally, SREBP expression, maturation, and activity is controlled 
by the PI3-kinase/Akt/mTOR axis which fuels de novo lipid synthesis in 
BrCa cells by upregulating SREBP targets [50,120] [–] [122]. This is 
reflected by high activity of SREBP-regulated target genes in primary 
BrCa tissues with a strong engagement of mTOR activity [121]. Genetic 
inactivation of SREBF1 and SREBF2 in human BrCa cell lines activates 
endoplasmic reticulum stress, unfolded protein response, and apoptosis 
[123]. Moreover, mevalonate pathway upregulation and subsequent 
geranylgeranylation of Rho-GTPases by a concerted action of mutant 
p53 and SREBP activity drives the activation of YAP/TAZ 
proto-oncogenes in TNBC cell lines [119]. SREBP activity is also 
modulated by acidification, inflammation, and ER stress in colorectal 
and hepatocellular cancer cells and similar regulations are likely to 

occur in BrCa, too [77]. Collectively, aberrant activity of the mevalonate 
pathway fuels BrCa in an intensive dialogue with additional 
tumor-supporting signaling pathways. 

3.3. The role of prenylation in BrCa 

The activity, membrane attachment, and subcellular trafficking of a 
countless number of signaling proteins depends on a posttranslational 
lipid-modification referred to as protein prenylation. Here, FPP is used 
for protein farnesylation, whereas GGPP is a specific substrate for ger
anylgeranylation [124,125]. In BrCa cells, geranylgeranylation seems to 
be critical for tumor cell survival as GGPP supplementation often fully 
reverses antitumor effects elicited by inhibitors of the mevalonate 
pathway [103,126,127]. A major family of signaling proteins that un
dergoes prenylation are Rho-GTPases [19]. In physiological homeosta
sis, Rho-GTPases hold essential functions in cellular adhesion, 
differentiation, motility, cell cycle, gene expression, cytoskeletal 
remodeling, and survival [128] [–] [130]. The pleiotropic functions of 
Rho-GTPases in tumorigenesis are undisputed [128,131] [–] [135]. In 
reciprocal cooperation with additional regulators like Akt, signal 
transducers and activators of transcription (STATs) or Myc, classical 
Rho-GTPases such as members of the Ras superfamily in are involved in 
BrCa tumor cell growth, motility, invasion, stemness and self-renewal, 
mutant p53 stabilization, angiogenesis, and drug resistance [102,103, 
108,119,130,136–143]. Recently, Rac1 has been shown to be upregu
lated in chemoresistant BrCa cells and to drive the non-oxidative pentose 
phosphate pathway, which results in enhanced nucleotide production 
and protection against DNA-damaging chemotherapeutics [144]. High 
expression and activity of Ras or Rac1 as well as related signaling 
pathways including mitogen-activated protein kinases (MAPK) are 
associated with worse clinical outcome and local recurrence in patients 
with BrCa [140,144] [–] [146]. Importantly, some Rho-GTPases present 
with both pro-and antitumoral functions depending on specific cir
cumstances. For example, RhoA activation by Raf-1 kinase inhibitor 
protein suppresses BrCa invasion and metastasis and facilitates a 
reduced intratumoral accumulation of macrophages [147]. RhoB is a 
tumor suppressor in early BrCa growth but promotes tumor growth once 
neoangiogenesis becomes an integral part of tumor progression [148]. 
Given the generally broad protumorigenic roles of Rho-GTPases in BrCa 
and encouraging preclinical investigations, clinical studies aimed to 
prove the efficacy of specific inhibitors of farnesyl and geranylgeranyl 
transferases, enzymes that facilitate protein prenylation [125,149]. 
However, the outcome of these studies was mostly discouraging in 
several malignancies including BrCa [12,125]. The underlying reasons 
that have been speculated include alternative prenylation of Ras pro
teins, unsuitable tumor stages in which the inhibitors have been used 
and toxicity concerns [9,125]. Novel and optimized approaches to target 
prenylated key players of BrCa tumorigenesis, including Rho-GTPases, 
are to be expected in the future. 

4. The antitumor effects of statins and amino-bisphosphonates 
in BrCa 

In this review, we focus on the antitumor effects of statins and N-BP 
(Fig. 3) as these agents are clinically approved: Statins as a gold- 
standard to treat high cholesterol levels in patients prone to an 
increased risk of developing cardiovascular diseases and N-BP for the 
treatment of osteoporosis and bone metastases secondary to osteotropic 
malignancies such as BrCa [41,150]. Statins lower serum cholesterol by 
blocking the HMGCR, depriving intracellular cholesterol levels and by 
stimulating a subsequent increase of LDLR expression via the 
SREBP-driven feedback loop [41]. N-BP inhibit the FDPS and interfere 
with the prenylation of Rho-GTPases, whose activity is crucial for the 
unrestricted function of bone-resorbing osteoclasts [151]. As N-BP show 
strong affinity to hydroxyapatite in bone tissue they are ideally suited as 
a therapy in diseases that are associated with increased osteoclastic bone 
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resorption and subsequent skeletal-related events such as fractures or 
hypercalcemia [152] [–] [158]. Moreover, N-BP are recommended in 
patients with BrCa who are prescribed with endocrine therapy and at 
high risk of developing bone loss [159]. 

4.1. Affecting tumor cell survival 

Statins and N-BP decrease vitality, proliferation, and cell cycle pro
gression of several BrCa cell lines and simultaneously induce apoptosis 
and autophagy in vitro and in animal models of primary and metasta
sizing BrCa [160,161,170] [–] [162,177] [–] [169]. The underlying 
mechanisms include several modulations of cellular factors such as 
cyclins, p21, p27, caspases, anti-apoptotic proteins, TNF-related apop
tosis-inducing ligand (TRAIL), Her2 protein expression, or nitric oxide 
[127,165,167,173,178] [–] [180]. Of importance, the susceptibility of 
BrCa cells strongly varies depending on their distinct molecular and 
genetic profiles and is further dependent on the nature of the statin 
(lipophilic vs. hydrophilic) or the type of the N-BP. In preclinical models 
of BrCa, lipophilic statins such as atorvastatin and simvastatin were 
superior over hydrophilic rosuvastatin and pravastatin [127,168]. This 
can be attributed to varieties in HMGCR affinity and the differences of 
membrane crossing between lipophilic and hydrophilic statins [168]. 
Among N-BP, zoledronic acid has shown superiority over other N-BP 
tested [172,181,182]. 

4.2. Modulating tumor cell signaling 

Statins and N-BP target signaling pathways and mediators that 
facilitate distinct protumorigenic effects in primary and metastasizing 
BrCa such as Akt, Erk, JNK, YAP/TAZ, mTOR, chemokines, prosta
glandins, cyclooxygenase-2, as well as Her2-and NFκB-signaling [119, 
161,168,177–179,183–186]. Moreover, statins stimulate the 

degradation of mutated p53 but activate wildtype p53 functions in BrCa 
cells. Mechanistically, the reduction of cellular mevalonate-5-phosphate 
specifically inhibits the interaction of mutated p53 with its chaperone 
DNAJA1 [187]. Mutant p53 stabilization depends on RhoA ger
anylgeranylation and on the interaction with heat shock protein 90 
which is disrupted by statin-mediated prenylation inhibition [136]. Of 
note, lovastatin activates liver kinase B1 and p38 kinase leading to an 
activation of wildtype p53 that in turn inhibits survivin and activates 
cell death in MCF-7 BrCa cells [188]. 

The underlying mechanisms that are responsible for the numerous 
antitumor effects of statins and N-BP on cancer cell signaling and, 
consequently, on the survival fate, remain incompletely understood. A 
lot of effects which have been described can be rescued by supple
menting BrCa cells with mevalonate, FPP or GGPP which allows for 
recovering prenylation as well as the production of downstream mole
cules including dolichol or cholesterol [126,127,162,183,187]. Hence, 
one obvious mechanism is the reduction of the intracellular pool of 
isoprenoids as building blocks for the synthesis of several pivotal 
products that, among others, facilitate membrane attachment and ac
tivity of Rho-GTPases [161]. By affecting prenylation, atorvastatin, 
cerivastatin, and N-BP reduce the membrane-bound fraction of Ras and 
RhoA in TNBC cells and lead to the accumulation of unprenylated and 
inactivated Rho-GTPases in BrCa tumors [168,173,183,189] [–] [191]. 
As Rho-GTPases affect numerous signaling proteins including NFκB, 
mevalonate pathway inhibitors are likely to affect cancer cell signaling 
by disturbing Rho-GTPase localization, activation, and downstream 
pathways [192]. Moreover, mevalonate pathway inhibitors reduce 
cholesterol production which affects cell membrane rigidity and fluidity 
and thereby the localization of membrane-associated molecules. For 
example, by lowering membrane cholesterol, lovastatin treatment leads 
to internalization and degradation of ErbB2 [193]. Another mechanism 
is the impaired N-glycosylation of several membrane-associated 

Fig. 3. Antitumor effects of statins and amino-bisphosphonates (N-BP) in breast cancer. The figure represents six major categories including some underlying 
mechanisms and the exemplary chemical structures of simvastatin and zoledronic acid. Ak strain transforming (Akt); B-cell lymphoma 2 (Bcl-2); c-Jun N-terminal 
kinase (JNK); cluster of differentiation 44 (CD44); endothelial cell (EC); epithelial-to-mesenchymal transition (EMT); focal adhesion kinase (FAK); Forkhead box O3 
(FOXO3a); histone deacetylases (HDACs); human epidermal growth factor receptor 2 (HER2); interferon (IFN)-γ; mammalian target of rapamycin (mTOR); matrix 
metalloproteinases (MMPs); myeloid-derived suppressor cells (MDSC); natural killer cell (NK cell); nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells 
(NFκB); nitric oxide (NO); phosphatase and tensin homolog (PTEN); Ras-related protein Rab-11B (Rab11b); reactive oxygen species (ROS); regulatory T cells (Tregs); 
tumor-associated macrophages (TAM); V gamma 9/V delta 2 T cells (Vγ9Vδ2 T cells); vascular endothelial growth factor (VEGF); Yes-associated protein 1 (YAP) and 
transcriptional co-activator with PDZ-binding motif (TAZ). Created with BioRender.com. 
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glycoproteins with distinct roles in cancer such as induction of EMT 
[101]. Furthermore, statins increase the expression of the 
tumor-suppressor PTEN in BrCa xenograft models by preventing pro
moter binding by NFκB [178]. In addition, statins modulate the epi
genome by regulating DNA methyltransferases and histone deacetylases 
in BrCa cells [194]. The underlying mechanisms include a disruption of 
the crosstalk between Ras and PI3/Akt/mTOR signaling as well as the 
modulation of metabolic reactions that provide NADPH [194]. Tran
scriptome analysis revealed that statin effects involve on- and off-target 
alterations of gene transcription at promoter and transcription factor 
level by which several pathways are affected [195]. Hence, a multifac
eted spectrum of responsible mechanisms beyond inhibited protein 
prenylation account for the pleiotropic effects of mevalonate pathway 
inhibitors in cancer cells and further investigations are needed to fully 
elucidate them. 

4.3. Interfering with steps of the metastatic process 

Patients with BrCa mostly present with metastases to lungs, brain, 
liver, and bones. In respective mouse models, statins and zoledronic acid 
prevent metastasis formation and proliferation [101,108,160,169,174]. 
Among other factors, these effects were mediated by regulating the 
tumor suppressor FOXO3a, which downregulation is associated with 
poor survival in affected patients [160]. Atorvastatin did not reduce 
tumor burden or proliferation of primary BrCa cells growing in murine 
mammary fat pads, but significantly prevented secondary tumor 
outgrowth within the lungs [169]. A recent study demonstrated that 
simvastatin and pitavastatin prevent BrCa brain metastases and improve 
survival by targeting the small Rho-GTPase Rab11b [196]. Moreover, 
simvastatin reduced the growth of osteolytic bone metastases derived 
from MDA-MB-231 cells by downregulating the cancer stem cell marker 
CD44 [197]. In a concerted action with their hydroxyapatite-binding 
potential and inhibitory effect on osteoclasts, N-BP reduce cancer cell 
adhesion to bone, disrupt the release and signaling of protumorigenic 
factors stored within the bone matrix, and suppress tumor burden and 
incidence of bone metastasis in BrCa mouse models [152,174,198–203]. 

A prerequisite for metastasis is epithelial-to-mesenchymal transition 
(EMT). Here, several EMT-related genes including vimentin and E-cad
herin are downregulated by simvastatin, fluvastatin, and atorvastatin 
[204]. Furthermore, fluvastatin reduces dolichol-dependent glycosyla
tion that is an essential part of the EMT program [101]. Also BrCa cell 
adhesion, migration, and invasion are perturbed by statins and N-BP, for 
example by inhibiting Rho-GTPases, downregulation of integrins, matrix 
metalloproteinases (MMP), and the focal adhesion kinase [152,171,181, 
189,205,206]. 

4.4. Synergizing with cytotoxic drugs and overcoming resistance 

Statins and N-BP synergize and potentiate individual antitumor ef
fects when combined with each other or with chemo-, radio- and 
endocrine therapy, including doxorubicin, paclitaxel, gemcitabine, 
lapatinib, tamoxifen, and letrozole [108,127,173,193,204,207–216]. In 
TNBC cells, simvastatin synergizes with the histone deacetylase inhibi
tor vorinostat both in vitro and in mouse models [217]. Interestingly, 
fluvastatin efficacy is potentiated by activators of the AMP-activated 
protein kinase such as aspirin and metformin [218]. Simvastatin and 
zoledronic acid also overcome lapatinib- and trastuzumab-resistance in 
BrCa cells, in part by affecting survivin [105]. These findings indicate 
mutual drug sensitizations between mevalonate pathway inhibitors and 
conventional treatments. Such combinations can aid in reducing indi
vidual concentrations and in overcoming both resistance mechanisms 
and the limitation of clinically achievable levels, which are often in 
contradiction to those used in preclinical studies. 

4.5. Altering the tumor microenvironment and immune system 

Statins and N-BP exert several immune-modulating effects in models 
of BrCa and in patients, highlighting their complex potential in 
reprogramming resident cells of the TME. First, both classes of drugs 
stimulate the infiltration of the tumor by effector T cells, reduce the 
recruitment of immunosuppressive tumor-associated macrophages 
(TAM), and reverse their tumor-promoting M2 into the tumor- 
suppressive M1 phenotype [170,171,219]. By reducing TAM recruit
ment and MMP9 production, zoledronic acid reduces the intratumoral 
infiltration of myeloid-derived suppressor cells [171]. In experimental 
BrCa, zoledronic acid potentiated the antitumor effect of a programmed 
cell death protein (PD)-1 antibody by increasing the recruitment of 
cytotoxic T cells and the systemic production of antitumoral interferon 
(IFN)-γ [220]. Chemokine production by BrCa cells also triggers 
expansion and immunosuppressive activity of regulatory T cells (Tregs), 
which in turn stimulate the migratory potential of tumor cells. This 
reciprocal interaction is attenuated by zoledronic acid in preclinical and 
clinical settings [221] [–] [223]. Notably, N-BP and especially tumor 
cells with inhibited FDPS and accumulation of mevalonate pathway 
intermediates due to its higher activity recruit and activate a specific 
subset of blood T cells named Vγ9Vδ2 T cells [152,153,224]. Activated 
Vγ9Vδ2 T cells, directly or indirectly via natural killer (NK) cell and 
IFN-γ stimulation, mediate cytotoxicity against N-BP-treated BrCa cells 
and macrophages independently of their polarization profile [224] [–] 
[230]. NK cells are also activated directly by statins and interleukin-2 by 
support of specific dendritic cells [231]. 

Another integral part of the tumor microenvironment that preserves 
continuous tumor growth is local blood and nutrient supply by de novo 
angiogenesis. Especially N-BP impair angiogenesis in models of BrCa by 
mechanisms that include downregulation of vascular endothelial growth 
factor, suppression of MMP produced by TAM, impaired vascular tissue 
differentiation and reduced capillary sprouting, mechanism that can be 
partially recapitulated in treated patients, too [126,152,171,182,186, 
201,232,233]. Additionally, phenotype, expansion, activity, and 
recruitment of several other cellular players involved in tumorigenesis 
are affected by statins and N-BP including hematopoietic stem cells, 
monocytes, macrophages, osteoblasts, and endothelial cells [170,171, 
234] [–] [238]. 

4.6. Results of clinical studies 

Several clinical studies have assessed the impact of statins and N-BP 
on BrCa. Of note, interpretation and comparability of these studies is 
difficult as different study designs and varying outcome parameters are 
used and randomized controlled trials in this setting remain rare (pre
sented in Tables 1 and 2 and reviewed elsewhere [239] [–] [241]). A 
meta-analysis from 2012 including thirteen cohort and eleven 
case-control studies reported no impact of long-term statin use on the 
risk of BrCa (RR = 1.03; 95% CI = 0.96–1.11) [242]. A Danish pro
spective cohort study including 18,769 patients with stage I-III invasive 
BrCa demonstrated a reduced 10-year risk of recurrence (HR 0.73; 95% 
CI 0.60 to 0.89) exclusively by lipophilic, but not by hydrophilic statin 
prescription [243]. Of note, in a retrospective study in patients with 
inflammatory BrCa, a reduction of the recurrence risk (HR 0.63; 95% CI 
0.42 to 0.96; p < 0.001) and longer progression-free survival (4.9 years 
vs. 1.8 years; p = 0.04) were seen by hydrophilic, but not lipophilic 
statins [244]. In two additional studies including patients with stage I to 
III BrCa, an increase of BrCa-specific survival was only seen in the TNBC 
subgroup or in case of tumors expressing low or weak HMGCR levels 
[116,245]. Further evidence of clinical efficacy of pre- and 
post-diagnostic statin use was reported in additional prospective and 
retrospective studies [246] [–] [252]. There is also evidence that 
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Table 1 
Selected clinical trials and findings using statins in patients with BrCa.  

Cancer type n Timing/Doses Medium follow-up/ 
duration 

Selected findings References 

Prospective trials 
Stage I-III BrCa 1945 Statin use of >100 days after 

diagnosis 
5 years Risk of recurrence: HR (95% CI): 0.67 (0.39–1.13) for use >100 days; p linear trend = 0.02 for longer use [249] 

Stage I-III BrCa 18,769 Statin use after diagnosis 6.8 years 10-year risk of recurrence: HR (95% CI): 0.73 (0.60–0.89) by L-statins [243] 
Stage I-III BrCa 910 Statin use before or after diagnosis 5.4 years Tendency of reduced BCSS in patients with negative/week HMGCR expression (Adjusted HR 0.37, 95% CI 0.11–1.24, 

P = 0.11) 
[116] 

Retrospective trials 
Stage II-III invasive BrCa 703 Statin use of >6 month after 

diagnosis 
55 months Risk of recurrence: HR (95% CI): 0.40 (0.24–0.67); p < 0.001. Median DFS: 112.0 vs. 90.0 months; p = 0.001 [247] 

Stage III inflammatory 
BrCa 

723 Statin use at diagnosis 2.9 years Risk of recurrence: HR (95% CI): 0.63 (0.42–0.96); p < 0.001. Median PFS: 4.9 years (H-statins) vs.1.8 years (no 
statins); p = 0.04 

[244] 

Stage I-II BrCa 4216 Statin use after diagnosis 6.3 years Risk of recurrence: HR (95% CI): 0.76 (0.54–1.05) for L-statins [246] 
Stage I-IV BrCa 31,236 Statin use before, at, or after 

diagnosis 
3.3 years RBCD: HR (95% CI): 0.46 (0.38–0.55) in post-diagnostic and 0.54 (0.44–0.67) in pre-diagnostic users [252] 

Stage I-IV BrCa 20,559 Statin use before or after diagnosis 61.6 months Risk of BrCa death: HR (95% CI): 0.83 (0.75–0.93; P = 0.001) in post-diagnostic and 0.77 (0.63–0.95; P = 0.014) in 
pre-diagnostic users 

[251] 

Stage I-III TNBC 23,192 Statin use within 1 year after 
diagnosis 

4.4 years BCSS: HR (95% CI): 0.42 (0.20–0.88); P = 0.022. OS: HR (95% CI): 0.70 (0.50–0.99); P = 0.046 [245] 

Selected window-of-opportunity (neoadjuvant) trials 
Stage 0 or I invasive BrCa 45 20 mg/day and 80 mg/day 

fluvastatin 
3–6 weeks before 
surgery 

Decrease of Ki67 in high-grade tumors by 7.2% (p = 0.008) [255] 
Increase of CC3 in high-grade tumor (60% vs. 13%; p = 0.015) 

Stage I-III BrCa 50 80 mg/day atorvastatin 2 weeks before surgery Posttreatment increase of HMGCR expression (p = 0.0005) [253] 
Decrease of Ki67 in HMGCR-positive tumors by 24% (p = 0.02) 

Primary invasive BrCa 50 80 mg/day atorvastatin 2 weeks before surgery Decrease of nuclear cyclin D1 gene expression (p = 0.008) [254] 
Increase of p27 expression in tumor cells (p = 0.03) 

Primary invasive BrCa 42 80 mg/day atorvastatin 2 weeks before surgery Decrease of CYP27A1 mRNA expression (p = 0.09) [85] 
Increase of CYP27A1 protein expression (p = 0.033) 

3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); breast cancer specific survival (BCSS); BrCa (breast cancer); cleaved caspase-3 (CC3); disease-free survival (DFS); HR (Hazard ratio); n (number of patients enrolled); 
overall survival (OS); progression-free survival (PFS); Risk of Breast Cancer Death (RBCD); triple-negative breast cancer (TNBC). 
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öbel et al.                                                                                                                                                                                                                                   



Cancer Letters 542 (2022) 215761

8

combining statins with angiotensin-converting enzyme inhibitors may 
be beneficial for the outcome of patients with stage II/III BrCa [247]. A 
recent meta-analysis on statins, including seventeen cohort studies with 
168,000 patients, described a significant decline of recurrence (HR =
0.72; p˂0.001) and disease-specific mortality rates (HR = 0.80; 
p˂0.001). Benefits were observed independently of the type of statin 
used [248]. In window-of-opportunity trials, high doses of atorvastatin 
(80 mg/day) or fluvastatin (80 mg/day or 20 mg/day) were adminis
tered for few weeks prior to surgery in patients with newly diagnosed 
BrCa. Here, statin treatment increased apoptosis markers as well as 
HMGCR and tumor suppressor p27 protein expression, while reducing 
the expression levels of Ki67, cyclin D1, and CYP27A1 [85,253–255]. 
However, in several other clinical studies, no clinical improvement was 
observed in patients receiving statins in BrCa. While these results may 
have resulted from differences in the study setup, they could also be seen 
as an indicator that the beneficial effects of statins may be limited to 
selected disease conditions, or depend on the chosen therapeutic 
regimen [116,242,256] [–] [259]. The controversial relationship be
tween cancer and the use of statins may be explained by the discrepancy 
of statin concentrations that are needed to achieve reasonable effects in 
preclinical models and measurable serum and intratumoral levels in 
patients [260]. Atorvastatin accumulates in BrCa tissue; however, it is 
still unclear, whether all statins have a similar potential and if yes, in 
which BrCa subtypes with varying biochemical and histopathological 
features [261]. In addition, some BrCa types with a stronger level of 
mevalonate pathway addiction might be more sensitive to statins. 
Future studies, especially aimed at identifying specific predictive 
markers of drug efficacy, need to further evaluate the group of patients 
that will mostly benefit from a treatment with statins. Circumvention of 
intrinsic resistance mechanisms to statins would further offer a strategy 
to potentiate their clinical efficacy [262]. In BrCa cell lines and clinical 
samples, both high basal expression of several mevalonate pathway 
genes including SREBP as well as the induction of a restorative feedback 
loop via the SREBP-HMGCR-axis by statin treatment mediates resistance 
[116,117,218,261,263,264]. This resistance is reversible by pharma
cological and genetic targeting of SREBP maturation and HMGCR 
expression [263,265] [–] [267]. Statin-sensitive BrCa cell lines appear 
defective of this feedback, but acquire statin resistance after long-term 
simvastatin exposure via HMGCR induction [263]. Moreover, 
statin-sensitivity is associated with a basal-like, ERα-negative subtype, 
alterations of E-cadherin expression and the Myc oncogene, p53 muta
tional status, induction of an EMT programme, as well as elevated levels 
of lipid rafts which reinforces the idea of BrCa subtype-specific statin 
benefits [98,101,169,255,264,268] [–] [271]. 

Given their inhibitory potential on bone resorption and strong pre
clinical data, a number of large clinical trials have been conducted to 
assess the clinical impact of adjuvant bisphosphonates in BrCa (sum
marized in Ref. [272]). An initial study published by Diel et al. more 
than 20 years ago demonstrated that, in addition to significantly 
decreasing the occurrence of bone metastases, oral treatment with the 
non-nitrogen bisphosphonate clodronate also led to a reduction of 
visceral metastases (p = 0.003) [273]. When given in a neoadjuvant 
setting, ibandronate and zoledronic acid have the capability of reducing 
the number of disseminated tumor cells in the bone marrow [274] [–] 
[276]. Although not always primarily designed for this purpose, a set of 
large randomized control trials assessed the impact of zoledronic acid on 
disease outcome and survival rates in BrCa [277] [–] [279]. While 
demonstrating that zoledronic acid prevents endocrine therapy-induced 
bone loss, findings of the ABCSG-12 and ZO-FAST studies proofed an 
additional long-term reduction in the risk of disease progression and 
recurrence in patients with early BrCa undergoing endocrine treatment 
[279] [–] [282]. Adding zoledronic acid to neoadjuvant chemotherapy 
significantly reduced the residual invasive tumor size within 6 months 
until surgery (27.4 mm vs. 15.5 mm; p = 0.006) [283]. Of note, a 
reduction of disease- and recurrence-free survival was only seen in 
postmenopausal patients treated with the combinatory approach [283, Ta
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284]. This positive effect in postmenopausal women persisted over a 
follow-up period of 10 years and was accompanied by a significantly 
reduced incidence of disease recurrence (HR (95% CI): 0.76 (0.63 to 
0–92); P = 0.005) [285]. A meta-analysis confirmed the beneficial ef
fects of bisphosphonates on BrCa survival and bone recurrence. How
ever, this effect was also limited to postmenopausal patients [286,287]. 
The relevance of these findings is underpinned by the observation that 
effects of zoledronic acid on bone-metastatic growth of BrCa cells was 
limited to ovariectomized mice mimicking postmenopausal conditions 
[288]. 

The positive effect of bisphosphonates in postmenopausal women 
may, in part, be simply explained by the resulting suppression of bone 
turnover, thus, creating a more hostile environment for cancer cells. 
However, there is evidence for additional effects. Estrogens counteract 
the immunomodulatory functions of zoledronic acid by driving Tregs 
expansion, stimulating the PD-1/PD-L1 axis and impairing NK cell 
cytotoxicity [289]. There is additional data to suggest that bisphosph
onates reduce the risk of developing BrCa. A prospective study involving 
almost 155,000 postmenopausal women showed a 30% reduced risk of 
developing BrCa (HR 0.68; 95% CI 0.52 to 0.88; p = 0.02) in patients 
taking oral bisphosphonates and this was later confirmed in a 
population-based case–control study [290,291]. 

While the benefit of adjuvant bisphosphonate in postmenopausal 
women receiving endocrine treatment for BrCa is well established, and 
the recommendation for their use has now been implemented in national 
and international guidelines, not all studies with bisphosphonates have 
yielded favorable outcomes. As such their use in premenopausal women 
or in a neoadjuvant setting is not generally recommended and should be 
conducted within appropriate clinical trials where possible. 

5. Outlook 

The relevance of the mevalonate pathway as a metabolic contributor 
in BrCa tumorigenesis has been clearly established. The pathway sup
ports tumor cell growth, cell signaling, metastasis, and a spectrum of 
resistance mechanisms against established endocrine and targeted 
therapies. Depriving cancer cells from tumor-promoting derivatives and 
target molecules of the mevalonate pathway such as cholesterol and 
prenylated proteins has become an approach to restrain tumor growth 
with clinical relevance. Statins and N-BP mediate a plethora of multi
faceted antitumor effects apart from simply inducing cell death that 
involve the modulation of the local signature of cellular and soluble 
components within the TME. However, several not fully resolved ques
tions still need to be addressed: Which underlying mechanisms specif
ically predispose BrCa cells to an increased addiction to the mevalonate 
pathway? What is the profound role of mevalonate pathway products in 
distinct stages of BrCa and how do they interconnect with alterations of 
other metabolic pathways? How and when should the pathway precisely 
be targeted to achieve inhibitory effects on cancer cells while supporting 
antitumoral immune functions? What are the optimal treatment regi
mens that exploit spatio-temporal dynamics of drug distribution and 
actions on cancer cells? Which combination therapies are a useful tool to 
reduce drug concentrations and to overcome potential resistance 
mechanisms including those related to conventional therapies? And 
finally, which biomarkers of statin and N-BP efficacy allow for identi
fying patients that would mostly benefit from these therapies? As statins 
and N-BP are commonly used in a broad range of patients with a 
comparably low spectrum of side effects, unravelling these questions is 
of utmost importance to fully utilize their potential in tailored ap
proaches in clinical BrCa management. 
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L. Almonacid, J. Casas, G. Fabriás, S. Mañes, A lovastatin-elicited genetic program 
inhibits M2 macrophage polarization and enhances T cell infiltration into 
spontaneous mouse mammary tumors, Oncotarget 4 (2013) 2288–2301, https:// 
doi.org/10.18632/oncotarget.1376. 

[220] Y. Li, Y. Du, T. Sun, H. Xue, Z. Jin, J. Tian, PD-1 blockade in combination with 
zoledronic acid to enhance the antitumor efficacy in the breast cancer mouse 
model, BMC Cancer 18 (2018) 669, https://doi.org/10.1186/s12885-018-4412-8. 

[221] H. Liu, S.H. Wang, S.C. Chen, C.Y. Chen, T.M. Lin, Zoledronic acid blocks the 
interaction between breast cancer cells and regulatory T-cells, BMC Cancer 19 
(2019) 1–13, https://doi.org/10.1186/s12885-019-5379-9. 

[222] H. Liu, S.-H. Wang, S.-C. Chen, C.-Y. Chen, J.-L. Lo, T.-M. Lin, Immune 
modulation of CD4+CD25+ regulatory T cells by zoledronic acid, BMC Immunol. 
17 (2016) 45, https://doi.org/10.1186/s12865-016-0183-7. 

[223] D. Sarhan, C. Leijonhufvud, S. Murray, K. Witt, C. Seitz, M. Wallerius, H. Xie, 
A. Ullén, U. Harmenberg, E. Lidbrink, et al., Zoledronic acid inhibits NFAT and IL- 
2 signaling pathways in regulatory T cells and diminishes their suppressive 
function in patients with metastatic cancer, OncoImmunology 6 (2017), 
e1338238, https://doi.org/10.1080/2162402X.2017.1338238. 

[224] I. Benzaïd, H. Mönkkönen, E. Bonnelye, J. Mönkkönen, P. Clézardin, In vivo 
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A. Göbel et al.                                                                                                                                                                                                                                   

https://doi.org/10.1056/NEJMoa1105195
https://doi.org/10.1056/NEJMoa1105195
https://doi.org/10.1016/j.jbo.2018.09.008
https://doi.org/10.18632/aging.203395
https://doi.org/10.1016/S0140-6736(15)60908-4
https://doi.org/10.1016/S0140-6736(15)60908-4
https://doi.org/10.1158/1078-0432.CCR-13-1246
https://doi.org/10.1016/j.jbo.2020.100317
https://doi.org/10.1200/JCO.2010.28.2095
https://doi.org/10.1200/JCO.2010.28.2095
https://doi.org/10.1038/sj.bjc.6605555
https://doi.org/10.1158/1078-0432.CCR-16-0547
https://doi.org/10.1158/1078-0432.CCR-16-0547

	The mevalonate pathway in breast cancer biology
	1 Introduction
	2 Role and regulation of the mevalonate pathway
	2.1 Providing essential products and modulating homeostasis
	2.3 Regulating the mevalonate pathway

	3 Dysregulation of the mevalonate pathway in breast cancer tumorigenesis
	3.1 Cholesterol drives BrCa tumorigenesis
	3.2 The dysregulation of the mevalonate pathway and interconnected signaling partners in BrCa tumorigenesis
	3.3 The role of prenylation in BrCa

	4 The antitumor effects of statins and amino-bisphosphonates in BrCa
	4.1 Affecting tumor cell survival
	4.2 Modulating tumor cell signaling
	4.3 Interfering with steps of the metastatic process
	4.4 Synergizing with cytotoxic drugs and overcoming resistance
	4.5 Altering the tumor microenvironment and immune system
	4.6 Results of clinical studies

	5 Outlook
	Funding
	Author contributions section
	Declaration of interest
	References


